
SAND85-2346 Unlimited Release UC--32 
Printed July 1986 

r 

Sandia Software Guidelines 
Volume 3 
Standards, Practices, and 
Conventions 

- Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico 87185 and Livermore, California 94550 
for the United States Department of Energy 
under Contract DE-AC04-76DP00789 

c .  1 



Issued by Sandia National Laboratories, operated for the United States 
Department of Energy by Sandia Corporation. 
NOTICE This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States Govern- 
ment nor any agency thereof, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes any warranty, ex- 
press or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, prod- 
uct, or process disclosed, or represents that  its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government, any agency thereof or any of 
their contractors or subcontractors. The views and opinions expressed here- 
in do not necessarily state or reflect those of the United States Government, 
any agency thereof or any of their contractors or subcontractors. 

Printed in the United States of America 
Available from 
National Technical Information Service 
US. Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161 

NTIS price codes 
Printed copy: A06 
Microfiche copy: A01 

2 



Y 

Distribution 
Category UC-32 

SAND85-2346 
Unlimited Release 
Printed July 1986 

Sandia Software Guidelines 
Volume 3 

Standards, Practices, and Conventions 

Sandia National Laboratories 
Albuquerque, New Mexico 87185 

Abstract 

This volume is one in a series of Sandia Software Guidelines intended for use in 
producing quality software within Sandia National Laboratories. In consonance 
with the IEEE Standard for Software Quality Assurance Plans, this volume identi- 
fies software standards, cQnventions, and practices. These guidelines are the result 
of a collective effort within Sandia National Laboratories to define recommended 
deliverables and to document standards, practices, and conventions which will help 
ensure quality software. 

. , , . . . . , ., ... .. I_ - ~ . .- . ~ -. .- 



Foreword 

This volume is one in a series of Sandia Software Guidelines intended 
for use in producing quality software within Sandia National Laboratories. 
These guidelines, when used in conjunction with the IEEE Standard for Soft- 
ware Quality Assurance Plans, will help ensure that computer programs de- 
veloped within the Laboratories are usable, reliable, understandable, main- 
tainable, and portable. When complete, the series will consist of the follow- 
ing documents: 

0 Volume 1: Software Quality (SAND85-2344) 
Presents an overview of procedures designed to ensure software quality. 
Includes a sample software quality assurance plan for a generic Sandia 
project. 

0 Volume 2: Documentation (SAND85-2345) 
Presents a description of documents needed for developing and main- 
taining software projects. Includes sample document outlines for a 
generic Sandia software project. 

0 Volume 3: Standards, Practices, and Conventions 
(SAND85-2346) 
Presents consensus standards and practices for developing and main- 
taining quality software at Sandia. Includes recommended deliverables 
for major phases of the software life cycle. 

0 Volume 4: Configuration Management (SAND85-2347) 
Presents a methodology for configuration management of Sandia soft- 
ware projects and their associated documentation. 

0 Volume 5: Tools, Techniques, and Methodologies 
(SAND85-2348) 
Presents evaluations and a directory of software tools and methodolo- 
gies available to Sandia personnel. 

1 



Acknowledgement 

A consensus document like this volume of the guidelines cannot be 
produced without the cooperation and hard work of a great many peo- 
ple throughout the organization. The sponsoring CAD Technology Division 
wishes to thank the members of the working group who wrote Volume 3, as 
well as the members of the balloting group who reviewed and refined it. 

Working Group Preface 

We have been proud to participate as members of the Working Group 
that has produced this document. We all believe that the ideas and prac- 
tices documented herein are important and deserve your attention. Like all 
converts to a new way of thinking, our past and even present actions are 
not necessarily in line with the ideal. Few of us have had the opportunity to 
apply all of these practices to a complete project. We believe the practices 
we have personally used have helped to produce a higher quality software 
product. 

Working Group Members, Volume 3 

Mike Blackledge, Chairperson Mike McGlaun (6444) 
Doug Adams (7262) Darl Patrick (7252) 
Art Ahr (2826) Don Rountree (5321) 
Sandra Babb (2854) Suzanne Rountree (2813) 
Louann Grady (2812) John Wisniewski (2113) 
Dick Isler (8274) Ann Yates (5255) 

This  document  w a s  printed using the LAW computer  typesett ing program 
and the Sandia  National Laboratories’ Autologic A P S - 5  photo typese t ter .  

.. 
11 



Contents 

5 

. 

1 Introduction 1 
1.1 Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
1.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
1.3 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 
1.5 How to Use This Manual . . . . . . . . . . . . . . . . . . . .  3 
1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

2 Project Planning and Management 5 
2.1 Recommended Deliverable . . . . . . . . . . . . . . . . . . . .  5 
2.2 Why Project Planning? . . . . . . . . . . . . . . . . . . . . .  5 
2.3 Project Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
2.4 Project Management . . . . . . . . . . . . . . . . . . . . . . .  7 
2.5 Tools, Techniques. and Methodologies . . . . . . . . . . . . .  8 

3 Requirements 9 
3.1 Recommended Deliverables . . . . . . . . . . . . . . . . . . .  9 
3.2 Why Requirements? . . . . . . . . . . . . . . . . . . . . . . .  9 
3.3 Software Requirements Specification . . . . . . . . . . . . . .  10 
3.4 Software Requirements Review . . . . . . . . . . . . . . . . .  13 
3.5 Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 
3.6 Tools, Techniques, and Methodologies . . . . . . . . . . . . .  14 

4 Design 15 
4.1 Recommended Deliverables . . . . . . . . . . . . . . . . . . .  15 
4.2 WhyDesign? . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
4.3 Software Design Criteria . . . . . . . . . . . . . . . . . . . . .  17 
4.4 General Design Standards and Guides . . . . . . . . . . . . .  18 
4.5 Detailed Design Procedure . . . . . . . . . . . . . . . . . . . .  19 
4.6 Design Description Documents . . . . . . . . . . . . . . . . .  20 

4.6.1 Preliminary Design Document . . . . . . . . . . . . .  20 
4.6.2 Detailed Design Document . . . . . . . . . . . . . . .  21 

4.7 Design Reviews . . . . . . . . . . . . . . . . . . . . . . . . . .  22 
4.7.1 Criteria for Design Reviews . . . . . . . . . . . . . . .  22 
4.7.2 Preliminary Design Review . . . . . . . . . . . . . . .  22 
4.7.3 Critical Design Review . . . . . . . . . . . . . . . . . .  23 

4.8 Methodologies and Tools . . . . . . . . . . . . . . . . . . . . .  23 

... 
111 

. . . . .  . ........... ..-... .. . . . .  , . I...I__ _.-- -I- . . . . . . .  ._. I_ 



4.8.1 Structured Design Techniques . . . . . . . . . . . . . .  24 
4.8.2 Software Design Tools . . . . . . . . . . . . . . . . . .  25 
4.8.3 Data Flow Diagrams . . . . . . . . . . . . . . . . . . .  25 
4.8.4 Design Decomposition . . . . . . . . . . . . . . . . . .  26 

5 Implementation 29 
5.1 Recommended Deliverable . . . . . . . . . . . . . . . . . . . .  29 
5.2 Coding Conventions . . . . . . . . . . . . . . . . . . . . . . .  29 

5.2.1 Code Structure . . . . . . . . . . . . . . . . . . . . . .  29 
5.2.2 White Space . . . . . . . . . . . . . . . . . . . . . . .  29 
5.2.3 Names and Variables . . . . . . . . . . . . . . . . . . .  31 
5.2.4 Modules . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2.5 Portability . . . . . . . . . . . . . . . . . . . . . . . .  34 

5.3 In-Line Documentsation . . . . . . . . . . . . . . . . . . . . . .  35 
5.3.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . .  35 
5.3.2 Telephone and Pencil Tests . . . . . . . . . . . . . . .  35 
5.3.3 Module Header . . . . . . . . . . . . . . . . . . . . . .  36 
5.3.4 Module Separation . . . . . . . . . . . . . . . . . . . .  36 
5.3.5 Variable Descriptors . . . . . . . . . . . . . . . . . . .  37 

5.4 Data Organization and Libraries . . . . . . . . . . . . . . . .  37 
5.4.1 Data Organization . . . . . . . . . . . . . . . . . . . .  37 
5.4.2 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

31 

38 

6 Test 39 
6.1 Recommended Deliverables . . . . . . . . . . . . . . . . . . .  39 
6.2 WhyTest? . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

6.2.1 Types of Testing . . . . . . . . . . . . . . . . . . . . .  40 
6.2.2 Preparing for Test . . . . . . . . . . . . . . . . . . . .  40 

6.3 Top-down and Bottom-up Testing . . . . . . . . . . . . . . .  42 
6.4 Software Testing Stages . . . . . . . . . . . . . . . . . . . . .  43 

6.4.1 Unit or Module Testing . . . . . . . . . . . . . . . . .  43 
6.4.2 Subsystem Testing . . . . . . . . . . . . . . . . . . . .  43 
6.4.3 System Testing . . . . . . . . . . . . . . . . . . . . . .  43 
6.4.4 Documentation Testing . . . . . . . . . . . . . . . . .  43 
6.4.5 Acceptance Testing . . . . . . . . . . . . . . . . . . . .  43 

6.5 Testing Real-Time Systems . . . . . . . . . . . . . . . . . . .  44 
6.6 Test Documentation . . . . . . . . . . . . . . . . . . . . . . .  46 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.7 Debugging 46 

c 

iv 



.. 

. 

. 

. 

7 Operation and Maintenance 48 
7.1 Recommended Deliverables . . . . . . . . . . . . . . . . . . .  48 

7.1.1 Who Needs Training? . . . . . . . . . . . . . . . . . .  49 
7.1.2 Training Approaches . . . . . . . . . . . . . . . . . .  49 

7.2 Manuals and Procedures . . . . . . . . . . . . . . . . . . . . .  51 
7.3 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 

7.3.1 Conversion Preparation . . . . . . . . . . . . . . . . .  53 
7.3.2 Conversion Approaches . . . . . . . . . . . . . . . . .  53 

7.4 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 

8 Configuration Management 55 
8.1 Recommended Deliverables . . . . . . . . . . . . . . . . . . .  55 
8.2 Why Configuration Management? . . . . . . . . . . . . . . . .  55 
8.3 What Is Configuration Management? . . . . . . . . . . . . . .  56 
8.4 Change Control . . . . . . . . . . . . . . . . . . . . . . . . . .  58 
8.5 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . .  61 

9 Verification and Validation 62 
9.1 Recommended Deliverables . . . . . . . . . . . . . . . . . . .  62 
9.2 Why Verification and Validation? . . . . . . . . . . . . . . . .  62 
9.3 Reviews and Audits . . . . . . . . . . . . . . . . . . . . . . .  63 

9.3.1 Formal Reviews . . . . . . . . . . . . . . . . . . . . . .  63 
9.3.2 Informal Reviews . . . . . . . . . . . . . . . . . . . . .  64 
9.3.3 Walkthroughs . . . . . . . . . . . . . . . . . . . . . . .  65 
9.3.4 Inspections . . . . . . . . . . . . . . . . . . . . . . . .  65 

9.4 Validation Testing . . . . . . . . . . . . . . . . . . . . . . . .  68 
9.5 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

10 Summary Example 69 

Appendix A: References 71 

Appendix B: Glossary and Acronyms 78 

83 Appendix C: Sample Sandia Module Header 

Appendix D: Control Structures 84 

Appendix E: Inspection Report Forms 85 

V 

. .... ................ . . I  ........... ..- _ _ ,  .............. l_l ..... .. .... -.-. 



Appendix F: Change Control Forms 

Index 

91 

94 

List of Tables 
1 Example Project Management Aids . . . . . . . . . . . . . .  8 
2 Reference Requirements Methodologies . . . . . . . . . . . .  14 
3 Example Interactive Debuggers . . . . . . . . . . . . . . . . .  47 
4 Change Table Sample . . . . . . . . . . . . . . . . . . . . . .  58 
5 Baseline Table Sample . . . . . . . . . . . . . . . . . . . . . .  59 
6 Change Control Software Tools . . . . . . . . . . . . . . . . .  60 

List of Figures 
1 Typical Software Life Cycle . . . . . . . . . . . . . . . . . . .  4 
2 Software Lifecycle Error Sources . . . . . . . . . . . . . . . .  16 
3 DFD 0 . Software Development Data Flow . . . . . . . . . . .  26 
4 DFD2.Design . . . . . . . . . . . . . . . . . . . . . . . . . .  27 
5 Mini-Specification . . . . . . . . . . . . . . . . . . . . . . . .  28 

.- 

vi 



Software Standards, Practices, and Conventions 

1 Introduction 

One of the many advantages hardware holds over software is the ease 
of statistical comparisons. It can easily be verified that from 1978 to 1985, 
computer capability at the weapons design laboratories increased twenty- 
fold, yet one can only guess at the subsequent increase in the amount of 
software developed and/or maintained. Nevertheless, the growing impor- 
tance of software within the laboratories is now an accepted fact, as is, un- 
fortunately, the number of problems associated with software development. 
Doing the software job right is increasingly important, and thus standards, 
practices, and conventions designed to ensure the quality of software need 
to be documented and provided to all individuals producing software. 

1.1 Intent 

In the spirit of Confucius [“The palest ink will outlive the strongest 
memory”], this manual defines and documents software standards, prac- 
tices, and conventions, and thus provides an information baseline for the 
individual engaged in software development, maintenance, and management 
within Sandia National Laboratories. The document outlines the deliver- 
ables that many Sandians recommend for such activities. The document and 
the deliverables are not limited to “coding techniques;” rather, included are 
recommended software design, development, and management practices. A 
two-page outline for implementation of these practices on a one-person or 
small project is provided in section 10. Such projects will require some mod- 
ification concerning the detail included in the deliverables (e.g., a plan may 
be defined in a short memo), but the deliverables are still needed. 

1.2 Environment 

On a daily basis, personnel at Sandia National Laboratories create soft- 
WR (War Reserve) ware with diverse characteristics and requirements. 

1 



software required for embedded computer systems, accomplished almost en- 
tirely in assembly language, must have high reliability and perform within 
a real-time system. Large and complex computer codes for finite difference 
analysis are produced in FORTRAN 77, and maintained for long periods 
of time. Admkistrative software is primarily written in COBOL, following 
the Systems Development Methodology/Structured [SDM]. Reimbursable 
projects for the Department of Defense are written in C or Ada, and often 
have to meet software development standards required by outside agencies. 

The Sandia personnel who develop or modify these diverse software pro- 
jects, however, have several characteristics in common: 

0 They are few in number per project. About a dozen programmers/ 
analysts is as large as any project usually extends, and one software 
professional per software project is not uncommon. 

0 They want to produce a quality software product. 

0 They are under schedule and resource constraints. 

The last two characteristics appear to be at cross-purposes with each other. 
The schedule and resource constraints can pressure programmers to begin 
coding prior to signed-off system requirements and formally produced system 
designs. Similarly, these external constraints (or even programmer priori- 
ties) can cause an inadequate amount of time to be spent documenting a 
project. In the case of a one-person project, the professional may look upon 
himself as the primary user, and feel that little documentation is required 
for this restricted application. If a requirement for a change were to appear, 
he/she assumes he/she will be the one to accomplish it. 

1.3 Applicability 

The manual is designed to be applied to any software developed or 
maintained either by Sandia personnel or by personnel under contract to 
the Laboratories. The guidelines are recommended practices and conven- 
tions to follow, whether the software involved is WR or non-WR, written 
in assembly language or higher level language, developed by one person or 
a reimbursable project software development team, and whether produced 
from new requirements or an existing code. For example, although a sam- 
ple coding technique in the implementation section of the manual may be 
demonstrated using a particular programming language, the principle illus- 
trated can be applied in any language. 

2 



The manual is a set of guidelines, not directives. Enforcement of an 
application of these guidelines must be established at the project level or 
individual level, with management support and promotion. Each individual 
project leader must make a conscious decision as to the degree these guide- 
lines will be imposed on his/her own project, or the appropriate “tailoring” 
of these guidelines to the project and environment at hand. Additional refer- 
ences may be required to provide the technical details and design principles 
that create the successful design engineering environment. Once the stan- 
dards for the project have been established, they must be publicized and 
rigidly enforced. This may be accomplished by referencing this document 
(or its applicable subsections or deliverables) in an Engineering Procedure, 
a Project Plan, or a Software Quality Assurance Plan. 

1.4 Organization 

Section 2 of the manual outlines characteristics of software project man- 
agement and provides recommendations for project planning. The next five 
sections address five of the eight major phases of a typical software life cycle 
[Figure 11: Requirements, Design, Implementation, Test, and Operation and 
Maintenance. Next are two sections which cover software quality assurance 
activities which occur throughout the life cycle: Configuration Management, 
and Verification and Validation. The last section provides a two-page sum- 
mary example of how to implement these practices on a Sandia project. 

References for additional information are listed by section in Appendix 
A. Appendix B provides a glossary of terms. For follow-on investigation, 
the book references are available through the Sandia library system, and 
DELTAK courses on structured analysis, design, programming, and tech- 
niques are available via the Sandia Computing Education Center. 

1.5 How to Use This Manual 

The manual was designed to aid in planning Sandia software tasks. The 
user can turn to any section and immediately apply the information pro- 
vided. Each section begins with the Recommended Deliverables for that 
phase or that activity, each marked by a 0 symbol and followed by informa- 
tion to define those deliverables and describe why they are recommended. 
The Summary Example (section 10) provides an outline for small Sandia 
software development projects. An Index at the end of the manual ref- 
erences both terms ( e . g . ,  portability) and phrases ( e . g . ,  structured 

3 

.__ -_lll _-___ . . . - ~ . . , . . ,  . , ,  I... 



L 

1 TEST I u 
INSTALLATION I I AND CHECKOUT 

MAINTENANCE 

I RETIREMENT 

Figure 1: Typical Software Life Cycle 

source code). 
The manual is designed to be used in conjunction with references [SSGvl] 

through [SSGV~], which will provide details on software quality practices at 
Sandia National Laboratories, and reference [IEE84q], the IEEE standard 
for preparation and content of Software Quality Assurance Plans. The IEEE 
Guide [IEE85] gives some detail on these plans. The IEEE references are 
available through Sandia’s Design Information Center, or by ordering from 
the IEEE Computer Society. 

1.6 Summary 

This manual documents software development practices that have been 
proven useful within the Laboratories and elsewhere, and presents a frame- 
work for creating a uniform product for follow-on software efforts. Tailor 
the application of these guidelines to a specific project based on its size, 
complexity, and criticality. Remember: on any software project undertaken, 
the software produced will most likely be modified by someone other than 
the original programmer; so it is important to create a quality product that 
any software professional would be glad to maintain. It has been said that 
“quality cannot be tested into software; it must be designed in.” At San- 
dia, the goal is to engineer in software quality, review out software defects, 
and test out software errors. Following the guidelines as indicated will help 
achieve these objectives and produce quality software. 

4 



2 Project Planning and Management 

2.1 Recommended Deliverable 

0 Project Plan 

0 Project Plan. The project plan is a brief overview of the project. It 
defines the project, describes the organization, proposes schedules and 
milestones, and defines procedures to ensure the quality of the final 
product. 

The consequences of neglecting the project plan include confusion over 
the deliverables, lack of understanding of the scope of the project, unclear 
requirements for resources and time, lack of unifying direction, and inability 
to determine project status. 

2.2 Why Project Planning? 

The goal of a software project manager is to produce a quality soft- 
ware product on time and within resource constraints. A quality product is 
one that meets the needs of the users and can be reliably used and easily 
maintained. 

Project planning and management involve many activities. Initially the 
scope of the project must be determined; the deliverables must be specified; 
and a strategy for accomplishing the project must be outlined. Once this 
plan is approved by management and the user agrees that the list of deliv- 
erables is accurate, then work can begin. During the life of the project, the 
project manager is responsible for many tasks. These tasks include providing 
continuity between phases of a project and through personnel changes, fore- 
seeing resources (tools, information, staff) that will be required and making 
them available, determining the status of the project, and revising schedule 
and budget estimates. 

The project manager is responsible for assuring that the deliverables of 
the project are of high quality. This involves writing and administering 
a quality assurance plan. This plan describes the standards, practices, and 
conventions to be applied in the software project, configuration management 
practices, and validation and verification techniques. The outline for such a 
plan is provided in Volume 1 of these Guidelines. 

The information in this overview of software project management can 
be found in many references. It is just a special case of technical project 

5 



management for which a huge body of literature exists. If there is one thing 
that Sandia excels at it is project management as applied to weapons (hard- 
ware) projects. Standards and practices are documented in the Engineering 
Procedures Manual. These same ideas can be applied to software projects 
as well. 

Since many software projects involve very few people, some people may 
assume that the project management function can be ignored. This is wrong. 
The size and complexity of the project can determine the formality and depth 
of detail of the project plan and management practices. Project planning is 
important even on small, simple projects. 

2.3 Project Plan 

The project plan is- to be produced by the person with overall project 
responsibility. It is a changing document that is not complete until the 
project is over. 

What follows is an outline for a project plan. A plan should consist of at 
least one sentence on each topic, even if it is “Does not apply because ...”. 

Project Plan Outline 

1. Project Definition 
This is a 2-3 sentence statement of the project’s overall goal. 

2. Project Personnel 
Necessary functions and the people responsible for them are identified. 
If the project team is known, give names. If no staff has been assigned, 
describe the type of people required. If this is a one person project, 
list the functions that have to be performed with a notation of people 
to use as resources or reference. 

3. Project Requirements 
This will become the Software Requirements Specification to be pro- 
duced in the requirements phase. A rough draft of the specification is 
included here before the final version is approved. 

4. Implementation Strategy 
This describes the plan-of-action used to accomplish the project. 

(a) Schedule/Milestones 
Major milestones and accomplishment dates are included here. 

6 



Dates are initially estimates that are revised and finally replaced 
by the actual date. A minimum set of milestones are: 

i. Start Date 
ii. Software Requirement Specification Approved 
iii. Software Design Description Approved 
iv. Software Test Plan Approved 
v. Implementation Completed 
vi. Testing Completed 

vii. Release 

(b) Resource Plan 
This describes the types of resources required by phase. Re- 
sources include staff time, hardware, and other items such as 
travel, software, and tools. Resources translate into budget. 

This will be a list of items to be produced by the project and the 
person primarily responsible for preparing them. 

Standards, practices, and conventions to be applied in the soft- 
ware project for requirements, design, coding, and testing. 

Other projects or conditions that this project requires for com- 
pletion or success are listed. Alternatives are given. 

(c) Deliverables 

(d) Standards 

(e) Dependencies 

5 .  Quality Assurance Plan 
This section discusses how conformance to project requirements and 
standards will be evaluated. 

6. Training 
If project development personnel require special training (computer 
languages, software development techniques, etc.), the details of the 
training are listed: courses, schedules, trainees, and costs. 

2.4 Project Management 

Project management is the ongoing effort to guide, assist, and evaluate 
the project development task. It is a control mechanism. Information on 
status is achieved through frequent, measurable milestones (as often as every 

7 



two weeks). A milestone is an opportunity to assess progress and make 
changes if needed. 

The project plan is constantly being revised to reflect the true state of 
the project. In addition to the project plan, a project file can be helpful. It 
is an organized collection of pertinent data related to the project. It is used 
for reference and communication. 

During the course of the project development task, problems can oc- 
cur. The impact of these problems needs to be assessed and resolved. It 
is a project management responsibility to bring important decisions to the 
appropriate level of management. 

Aid: 
TELLAPLAN 
Microsoft Project 
VisiSchedule 
Harvard Total Project Manager 
Diagram Master 

Technique: Available on:. 
Gantt, PERT VAX/VMS 
Gantt IBM PC/DOS 
Gantt IBM PC/DOS 
Gantt, PERT IBM PC/DOS 
Gantt IBM PC/DOS 

Table 1: Example Project Management Aids 

8 



3 Requirements 

3.1 Recommended Deliverables 

0 Software Requirements Specification 

0 Software Requirements Review 

0 Software Requirements Specification (SRS). The SRS is a de- 
scription of the external interfaces and essential requirements of the 
software in terms of functions, performance, constraints, and attributes. 
Requirements are objective and measurable. The SRS is concerned 
with what is required, not how to achieve it. 

0 Software Requirements Review. A review of the SRS document 
is performed by project members, users, and management. It veri- 
fies that the intent of the SRS is clear, the software proposed by the 
SRS is what is desired, and that the project can proceed to the next 
development phase. 

Omitting the SRS may result in any of the following problems: building 
a system that is not what the users or sponsor wants; going over budget 
and behind schedule due to lack of a complete specification from which to 
estimate schedule and resources; developing software that does not integrate 
with existing software, hardware, or environment because design constraints 
were not understood; having design and testing problems since a definition 
of the software is lacking; and creating misunderstanding, confusion, and 
low morale among the project team members. 

The consequences of skipping the Software Requirements Review are 
misunderstandings about what will be delivered because formal approval 
and signoff by developers, users, sponsors, and managers of the project is 
lacking. 

3.2 Why Requirements? 

The initial phase of a software development project is the requirements 
phase. The purpose of this phase is to document why this software project 
was initiated and what this software project is to accomplish. It consists of 
two major steps. At the end of each step a document is produced. 

The first step in the requirements phase is the production of the software 
requirements specification (SRS). It is a description of the requirements that 

9 



the software must meet. To formulate the requirements, the environment 
in which the software will be used must be known. Information about the 
current operation, the users’ needs and problems, constraints on the solution, 
and user expectations is collected. This information will be incorporated in 
the SRS in various ways. 

Make every attempt to include a knowledgeable user on the team pro- 
ducing the SRS. A user can be a valuable source of information and can 
help to keep the SRS focused on user issues. 

In the requirements phase, several alternatives are explored including 
off-the-shelf software. The requirements team is responsible for proposing 
the simplest, most cost-effective solution - not just a solution. 

The SRS document includes a statement of purpose and scope for the 
software, background information that is required to understand the specifi- 
cation, the users’ view of the functions that will be provided by the system, 
and the entire environment (hardware, software, interfaces, operation) in 
which the software system will exist. This document emphasizes measurable 
requirements - speed, quantity, and volume. The SRS provides a standard 
against which the software design and implementation can be measured. 

The second step is to determine the adequacy of the SRS, via a Soft- 
ware Requirements Review. Participants in the review are the project team 
members responsible for design and test, users, sponsors, and management. 
Participants must reach a consensus and formally approve the SRS. 

There is an overlap between the requirements phase and the design 
phase. This is beneficial as long as the two phases do not become concur- 
rent. The overlap with the design phase can provide feedback on feasibility, 
resource requirements, and user interface issues. 

3.3 Software Requirements Specification 

The SRS is an explanation of what the software does from the user’s 
perspective, not how it will be done. This document provides the developers, 
users, sponsors, and management an opportunity to say exactly what this 
project is to accomplish. All of these people formally approve it. If there 
are disagreements, they should be resolved at this time. Changes at the 
requirements phase are very inexpensive and very easy compared to changes 
made during the test phase. 

The approved SRS is a controlled project document. Changes to it are 
approved by another Software Requirements Review. All members of the 
project team have access to the current version of the SRS to prevent re- 

10 



design. 
Even a tentative attempt at writing an SRS can yield benefits. A one 

sheet summary that is referenced and current is worthwhile. First and fore- 
most, the SRS must be readable and understandable. Diagrams are used 
liberally. 

The outline provided below can be modified to fit specific needs or cir- 
cumstances. An SRS is applicable to every software project except those 
that will be thrown away within one month. These type of projects are very 
rare since people share programs, and program source is rarely thrown away. 

A good guide to the SRS is the IEEE Guide to Software Requirements 
Specification [1EE84r]. It provides explanations and examples and is the 
source of the following: 

Software Requirements Specification 
Outline 

1. Introduction 

(a) Purpose 
The reason for writing the SRS is explained. The intended audi- 
ence is defined. 

This section presents an overview of what is to be produced. The 
wording used is as specific as possible. 

(c) Definitions, Acronyms, and Abbreviations 
This section explains the terminology that is used in the SRS. 
A very wide audience of people has to read and understand it. 
Glossaries such as the IEEE Standard Glossary of Software En- 
gineering Terminology [IEE83g] can define general terms. 

(d) References 
This is a bibliography of all documents mentioned in the SRS. 

(e) Overview 
This is a summary of what is contained in the SRS and its orga- 
nization. 

(b) Scope 

2. General Description 
This section is intended to provide a macro view of the project. It 
does not list specific requirements. Its purpose is to create a context 
in which the specific requirements can be understood. 

11 



(a) Project Perspective 
This section describes how this project and its products fit with 
other projects and products. If it is independent, this is stated. 

The functions to be provided by the project software are summa- 
rized. 

The end users of the system are identified. There may be several 
classes of users with different skills who require different types of 
information. 

(d) General Constraints 
This section provides information about conditions that will limit 
the software design. 

Possible changes to the constraints that would affect the require- 
ments are listed. 

(b) Software Functions 

(c) User Characteristics 

(e) Assumptions and Dependencies 

3. Specific Requirements 
This section contains all the information that the software designer 
requires to complete the software design. This section is the heart of 
the SRS. 

(a) Functional Requirements 
Basic actions that must occur in the software are given for each 
function. 

This section contains numerical requirements to be placed on the 
software such as number of simultaneous requests or transmission 
time given file size and system load. 

(c) Design Constraints 
Limitations and restrictions are given that result from standards 
and hardware. 

Special circumstances such as the need to process classified data 
may add software requirements. 

(e) External Interface Requirements 
Requirements for interfaces with users, hardware, other software, 
environmental power, and communications are specified. 

(b) Performance Requirements 

(d) Attributes 

12 



3.4 Software Requirements Review 

_- 

The Software Requirements Review is a formal examination of the SRS 
document by project members, users, sponsors, and management. Its goal 
is to verify that the SRS document adequately and unambiguously describes 
the project requirements, and that those requirements are testable and easily 
traceable. 

A set of criteria for evaluating the SRS is established. One possible 
set is: unambiguity, completeness, verifiability, consistency, modifiability, 
traceability, and usability during the operations and maintenance phase. 

A Software Requirements Review Report is produced that indicates de- 
ficiencies in the SRS and written addenda or corrections that would resolve 
the deficiencies. All the participants must agree on the SRS. They must 
understand it, agree that it describes the software desired, and give autho- 
rization to continue development. 

Guidance in conducting a formal review can be obtained in Section 9 of 
this document. 

3.5 Prototypes 

Prototypes have a place in the requirements phase of a software project. 
A prototype is a minimally functional system used to illustrate the software’s 
user interface or to prove the feasibility of a concept. Caution: This is a 
non-standard definition of the word prototype. Engineers would typically 
think of a prototype as a first, fully functional system or a pattern. The 
term as used here is common in the software community, as in “rapid proto- 
typing.” Synonymous terms are facade, demonstration model, and cartoon. 
An analogy used to explain a software prototype is the Western town cre- 
ated for a movie, where buildings are just facades. The viewer sees only the 
street which appears realistic. 

Prototypes are used to understand a complex user interface: The users 
and developers may not know exactly what the interface requirements should 
be. Prototypes allow both of them to get some experience with the user in- 
terface before the requirements are set. Users must be involved in a proto- 
type if it is to be valuable. Human factors experts can be helpful in designing 
prototypes. 

Another use for prototypes is to prove the feasibility of a concept. A 
simple model that requires minimal resources is created to learn about the 
system, try out new algorithms, verify capabilities, etc. It is this type of 

13 



prototype that can become the system. This pitfall must be avoided. It 
is necessary to clearly define the scope and limitations of the prototype. 
There must be a way to determine when the prototype is complete. Given 
the prototype experience, the SRS can be completed. There is no obligation 
to use any part of the prototype in the design or implementation. 

3.6 Tools, Techniques, and Methodologies 

The following methods are available to help define the user’s require- 
ments and produce the software requirements specification. These method- 
ologies are not presented with any endorsement or suggestions. They are 
listed in Table 2 as references for further investigation. 

~ 

Acronym: 
SSA 
SADT 

PSL/PSA 

SREM 

USE 

SDM/S 

Methodology: 
Structured Systems Analysis 
Structural Analysis and 
Design Technique 

Problem Statement Language/ 
Problem Statement Analyzer 

Software Requirements Engineering 
Methodology 

User Software Engineering 
Specification Method 

Systems Development Methodology/ 
Structured 

Reference: 
[GAN79] [DEM78] 
[ROS77], [ROS77b] 

[TEI77] 

[ALF77] 

[WAS 791 

[SDMI’ [SNLI 

Table 2: Reference Requirements Methodologies 

These approaches attempt to provide a structure for the specification 
and to illustrate the.system development process. For a brief description 
of the first five techniques, see [WASSO]. Another source of information is 
Volume 5: Tools, Techniques, and Methodologies [SSGV~] . 

14 



4 Design 

4.1 Recommended Deliverables 

Design Description 

0 Design Review 

0 Design Review Results 

e Design Description. A Design Description documents the design 
work accomplished during the design phase. Documenting the design 
prior to coding avoids (or reduces) any design misunderstandings and 
subsequent re-coding. 

e Design Review. A Design Review is held to present and to discuss 
the design. The design is reviewed to discover any design inconsisten- 
cies or unmet requirements prior to the implementation phase. 

e Design Review Results. The results of the review are documented 
in a report which identifies all deficiencies discovered during the review 
along with a plan and schedule for corrective actions. The updated 
design description document, when placed under configuration control, 
will establish the baseline for subsequent phases of the software life 
cycle. 

People on projects who wish to avoid the design phase should be aware 
that most software life cycle errors occur during the requirements and design 
phases, as shown in Figure 2 below. If these errors are allowed to propagate 
through the implementation and test phases, they will be more costly to 
correct. 

Tailor the design deliverables described in this section to the .project at 
hand. For example, subsection 4.6 discusses two different design description 
documents which are produced at different points in the design process. 
A large project, involving many people, may require both documents. A 
smaller, or less complicated, project should need only one document. Sim- 
ilarly, a project with many interfaces between users or between different 
software may require the two reviews discussed in subsection 4.7. A project 
with few interfaces or easily controlled interfaces should require only one, 
possibly less formal, design review. Any structured walkthroughs may be 
delayed until the implementation phase when software coding is done. 

15 



REQUIREMENTS 
& DESIGN 

\ f l  35% - 40% 

Y DEBUG / 

Figure 2: Software Lifecycle Error Sources’ 

4.2 Why Design? 

The requirements and design are two of the most important and ne- 
glected phases in the development of software. If the requirements and 
design have been developed in an organized and systematic manner, then 
all that remains is for the program logic (described in pseudocode or struc- 
tured English) to be translated into program code. Take the following to 
heart: 

“Think first, code later.” 

Many coding problems can be avoided by following good design methods 
before doing any coding. Yourdon and Constantine [Y OU79] emphasize 
that by “introducing a specific formal design activity to describe fully, and 
in advance, all the pieces of a system and their interrelationshypps, we have 
not created a new activity in the program development cycle. Structured 
design merely consolidates, formalizes, and makes visible design activities 
and decisions which happen inevitably - and invisibly - in the course of every 
systems development project. Instead of occurring by guesswork, luck, and 

‘Source: Seminar by George Tice, “Software Quality and Productivity Improvement,” 

*quoted by David King but originally found in L. B. Chumra and H. F. Ledgard’s COBOL 
SNLA, Feb 13, 1986. 

with Style: Programming Proverbs, Rochelle Park, N.J. Hayden Book Co. 1976 

16 



default, these decisions can be approached deliberately as technical trade- 
offs.” 

Software that is to be of any long-term use to others, is designed to 
meet their needs. Users are included in the design of the product and, more 
importantly, in the definition of the requirements of the product. The time 
spent in design will be more than compensated for by software that is easier 
to maintain. There probably is more software being maintained or modified 
at Sandia than software being developed. 

Another aspect of well thought out requirements and design is especially 
important within Sandia: Hardware is relatively inexpensive; person-time 
and person-costs are becoming the primary factors in projects, and thus 
methods that primarily involve people need to be streamlined. Contractors 
should have a set of guidelines to follow in writing codes for Sandia. 

Other sources give reasons for design. Freeman [FRE80b] writes, “Per- 
haps the most important reason to design is that the creation of complex 
systems involves a very large amount of detail and complexity (;.e., rela- 
tionships of many sorts between many of the parts). If this complexity is 
not controlled, then the desired results will rarely be achieved. Design is 
the primary tool for controlling and dealing with this mass of detail and its 
attendant complexity. The regularity and structure of design methods and 
techniques serve to guide us through complex chains of reasoning where we 
might otherwise become lost.” Two other reasons for design are to aid in the 
discovery of the underlying structure of the problem and to improve system 
quality. During design, there “is not yet a huge investment in code and 
detailed decisions which cannot be changed when an evaluation indicates 
that desired system properties are not being met. If reliability, useful user 
functions, modularity, and so on are not planned for before programming is 
begun, then generally they will be unobtainable. ” [FRE80b] 

4.3 Software Design Criteria 

Once the software requirements have been established, the design phase 
can proceed. The design phase consists of the preliminary design of the 
software system, through the detailed design, up to (but not including) the 
coding in the implementation phase. The preliminary design defines the 
major elements of the software, the interfaces between those elements, and 
the flow of information through the system. The detailed or critical design 
provides a blueprint for coding. It includes sufficient detail for someone other 
than the software designer to develop the resultant source code. Design is 

17 



an iterative process. Even after a design has been reviewed and approved 
(baselined), it still is subject to modification through the change control 
process. 

Several criteria are followed for a good design. The following guidelines 
are given by Pressman [PRE82]: 

0 A design should partition the system into elements which perform 
specific functions. A design should be modular. 

0 A design should have a hierarchical organization to utilize the control 
among the software elements. A design should be refined in a top-down 
manner. 

0 A design should lead to modules or subroutines that perform indepen- 
dent functions. 

0 A design should be derived from information obtained during the soft- 
ware requirements process. The design process should be repeatable. 
Design needs to be more of a science and less of an art. 

Real-time applications (that measure, analyze, and control real world 
events as they occur) should not be exempt from the design process. Re- 
sponse times and bounds on software execution speed will impose additional 
design constraints. If response times are not met in the testing phase, the 
code can be checked and time-critical sections can be recoded. 

4.4 General Design Standards and Guides 

This section lists guidance available in two IEEE documents, the IEEE 
Software Quality Assurance standard [IEE84q] and the recently approved 
IEEE Guide for Software Quality Assurance Planning [IEE85] : 

0 Prepare a Software Design Description (SDD) to describe the major 
components of the software design (to include data bases, diagnostics, 
and interfaces). The SDD should describe how the software will meet 
the requirements of the Software Requirements Specification. It also 
provides a decomposition of the system into its components. 

0 Seriously consider using graphical techniques, top-down design, and a 
program design language. 

18 



0 State what standards, practices, and conventions will be followed in 
the detailed design of the program modules and their interfaces. Cover 
such areas as naming conventions and argument list standards. 

0 Hold a Preliminary Design Review (PDR) to evaluate the technical 
adequacy of the preliminary design of the software as outlined in a 
preliminary version of the Software Design Description. 

0 Hold a Critical Design Review (CDR) to determine how well the de- 
tailed software designs as described in the Software Design Description 
satisfy the requirements of the Software Requirements Specification. 

The SDD mentioned in this section is split into the preliminary design 

The following subsections on design give additional detail and sugges- 
document and the detailed design document (subsections 4.6.1 and 4.6.2). 

tions for implementing the IEEE guidelines. 

4.5 Detailed Design Procedure 

The individual elements of the software system such as subroutines, func- 
tions, or procedures initially should be described with an English-language 
narrative explaining the processing function of the module. Then, a detailed 
design tool can be used to translate the language narrative into a structured 
description that gives all necessary procedural detail. The following three 
types of detailed design tools should aid the designer: 

0 graphical tools 

0 tabular tools 

0 language tools 

Graphical design tools visually depict procedural detail. These tools 
include flowcharts3 and box diagrams (also known as Nassi-Schneiderman 
charts or Chapin charts for their developers). Data flow diagrams can be 

3An interesting opinion with regard to flowcharts: Brooks (31 tells us, “The flow chart is a 
most thoroughly oversold piece of program documentation. ..The detailed blow-by-blow 
flow chart is an obsolete nuisance, suitable only for initiating beginners into algorith- 
mic thinking. When introduced by Goldstine and von Neumann, the little boxes and 
their contents served as a high-level language, grouping the inscrutable machine-language 
statements into clusters of significance.” 

19 

. . /  , ,“_1 .I . . -. - . . __  .. _” . . 



used to depict the flow of data through the system. There also are tools for 
modeling data [MAR83]. Section 4.8 discusses design tools in more detail. 

Tabular tools include decision tables and IBM IPO (input-processing- 
output) charts, sometimes referred to as HIP0 charts. These are discussed 
in more detail in subsection 4.8. 

Language tools include a program design language (PDL), or pseudocode. 
It is not necessary to use specific design languages. The designer may pre- 
fer a type of highly structured English using IF-THEN-ELSE constructs, 
REPEAT UNTIL, BEGIN and END, FOR and DO, VARIABLE, CASE, 
and DO WHILE statements. The detailed module description is another 
approach. Such a description includes all data input to and output from 
the module, a list of all modules which call this module (CALLED BY), a 
list of all modules called by this module (CALLS TO), and a description 
or purpose of the module. This module description can later become some 
of the module header, discussed in section 5.3.3. The CALLED BY and 
CALLS TO pieces of information are necessary in the design phase to ex- 
plicitly describe all module interfaces. Since no code has been written at 
this point, there is no other source for detailed module interface information. 
If the software is re-designed at a later date, the design documentation is 
updated to reflect any changes which also will be reflected in the code. An 
automated design tool may help. At the very least, the design information 
can be entered on a computer and accessed via a powerful editor or word 
processor. 

4.6 Design Description Documents 

4.6.1 Preliminary Design Document 

The Preliminary Design Document (PDD) gives an overall repre- 
sentation of the software system to be designed. It documents the software 
structure addressed during the preliminary design phase and is used as input 
to the preliminary design review. 

Pressman [PRE82] suggests that the following topics be included in the 
document: 

0 System objective and software’s role 

0 Interfaces among hardware, software, and humans 

0 Major software functions 

20 



0 External files and databases 

0 Design constraints and limitations 

0 Reference documentation 

0 Design description. This includes descriptions of the data, the flow of 
information, and the interfaces within the software. 

If vendor software will be used as part of the system, the vendor docu- 
mentation should be referenced in the PDD. 

Much of the information is derived from the Software Requirements Spec- 
ification (SRS) developed during the requirements phase. The PDD takes 
the SRS a input and expands the information to a more detailed design 
description. In other words, the software system is taken from the point of 
what should be done, to the beginning of how it should be done. 

4.6.2 Detailed Design Document 

As the preliminary design moves into the detailed or critical design, the 
detailed software system description is extended down to the module level. 
Pressman [PRE82] suggests that the preliminary design documentation be 
expanded to include the following topics in the detailed design document: 

0 Module descriptions. This includes a description of the process, an 
interface description listing all data input and output from a module 
(including argument list data, external I/O, and global variables), and 
interfaces with other modules (called by and calls to). The description 
should clearly describe the major tasks and processing that occurs 
within a module. 

0 File structure descriptions. This includes logical descriptions of the 
external files and the data records. 

0 Global data descriptions. 

0 A cross-reference between the requirements and the modules critical 
to implementation of the requirements. 

0 Test provisions and guidelines. 

21 



0 Packaging and software transfer considerations. This may include high 
performance requirements or physical memory limitations which may 
cause modification in the design and a description of the operating 
system characteristics necessary to understand the design. 

4.7 Design Reviews 

There are many different approaches to software design review. Gener- 
ally, the preliminary design review and the critical design review are formal 
reviews. They require significant preparation and may involve a fairly large 
number of reviewers (maybe 8 to 12). The formal review can act as a sched- 
uled milestone for large software development systems. A smaller software 
effort, involving 1 or 2 people, may have a less formal preliminary design 
review with fewer reviewers. The preliminary design review is important to 
projects of all sizes to raise design issues early in the project’s life cycle and 
to gain both management and technical visibility. Design issues are not to 
be resolved at these formal reviews. 

The informal review involves a smaller number of people (perhaps 2 or 3) 
and may run from impromptu get-togethers to the structured walkthrough 
or the inspection process, discussed in section 9.3. 

4.7.1 Criteria for Design Reviews 

A software design review may include representatives of management, 
design, quality assurance, and the end-user community. A rule of thumb is 
to include the same number of reviewers as designers. The reviewers should 
take an adversary viewpoint but should remember that they are challenging 
the software system design and design approach and not the designers. A 
benefit of the design review process is the early discovery and correction of 
software defects and errors prior to code development. It is best to get the 
most experienced people available as reviewers to detect as many errors as 
possible, as early as possible in the software life cycle. 

All groups concerned with the design should participate in the review. 
This could include representatives from testing, software quality assurance, 
software development, system design, and the user/requester community. 

4.7.2 Preliminary Design Review 

The preliminary design review should emphasize traceability of the de- 
sign to the software requirements, the practicality and maintainability of 

22 



the design, and the adequate definition of the interface and data structure 
descriptions. Other design approaches should have been considered and rea- 
sons given for their rejection. Alternatively, the selection criteria may be 
enumerated. If the chosen design approach fails, an alternative approach 
may be available. Software limitations should be realistic, be acceptable to 
the final users, and be consistent with the Software Requirements Specifica- 
tion from the requirements phase. 

Document the results of the review in a report which identifies all de- 
ficiencies discovered during the review along with a plan and schedule for 
corrective actions. The updated design document, when placed under con- 
figuration control, establishes the baseline for the detailed software design. 

4.7.3 Critical Design Review 

The critical design review is a review of the detailed design of the software 
system prior to code development and implementation. It also is called 
the detailed design review. The detailed design is examined to assure that 
it will be easy to translate into computer code and that it satisfies the 
Software Requirements Specification. The module descriptions should not 
be ambiguous. The software design should be verifiable, consistent with 
other elements of the system, and well documented. 

Document the results of the review in a report which identifies all de- 
ficiencies discovered along with a plan and schedule for corrective actions. 
The updated design document, when placed under configuration control, 
establishes the baseline for coding. 

4.8 Methodologies and Tools 

There are many tools available. An overwhelming compendium of 412 
software life cycle tools is given in [DAC85]. Many tools may not meet the 
needs of the Sandia project. For software projects with multiple- designers, 
users, or interfaces, the design tool should be automated. Design changes can 
then be incorporated quickly without the initial design becoming obsolete. 
In the absence of all other tools, a rigorous design methodology could be 
combined with a word processor to document the design. Other features of 
the methodologies and tools to consider include the following: ease of use, 
short learning curve, ready availability to designers, graphics, structure, 
lack of ambiguity, and straightforward translation from detailed design to 
code. The discussion that follows indicates a few of the methodologies and 

23 

. .. . ... "- __ ... -. ___-.__ "_ 

. . .. ^" . 



techniques. Names and references are sprinkled liberally throughout for the 
in teres ted reader. 

4.8.1 Structured Design Techniques 

The proponents of structured design can be classified according to ap- 
proach: functional decomposition or data structured design [KIN84]. The 
functional decomposition approach includes data flow approaches and hier- 
archical structure charts showing structural aspects of a system. The data 
structured design approach emphasizes the structure of the data being pro- 
cessed. The functional decomposition methods seem better suited to the 
overall system specification and design phase, while the data structured 
design approach is appropriate for the design of individual programs and 
subroutines. As time goes on, the two structured design approaches may 
integrate each other’s philosophies into their own. 

Page-Jones [PAG78] discusses and gives examples of structure charts, 
data flow diagrams, pseudocode, data dictionaries, and mini-specs. Struc- 
ture charts depict the partitioning of a system into modules and show the 
hierarchy, organization, and communication interfaces between the modules. 
The data flow diagrams may be used as precursors to the hierarchical struc- 
ture charts. The set of lowest-level data flow diagrams may be translated 
into structure charts in order to show the time sequence of the processes 
necessary for coding. 

Yourdon and Constantine [YOU791 discuss structure charts and compare 
them to the more familiar flow charts. The flow chart shows a sequence 
of steps to be executed, or the flow of control. Structure charts, on the 
other hand, distinguish between control data and normal data in the system 
with different types of connecting arrows between the boxes. The structure 
chart shows hierarchy, or which functions are subfunctions of which other 
functions. The boxes in structure charts are a bounded group of program 
statements which can be referred to as a unit. The IBM HIPO (Hierarchical- 
Input-Process-Output) representation of inputs to outputs complements the 
structure charts. The HIPO chart for a module should have three columns 
- the INPUT parameters, the OUTPUT values, and the PROCESSes which 
give the relationship or transformation process between the INPUT and 
OUTPUT entries. 

24 



4.8.2 Software Design Tools 

Several functional decomposition and data flow tools are available. Your- 
don has aggressively marketed the data flow diagram approach. Other data 
flow approaches are the Structured Analysis and Design Technique (SADT) 
developed by Ross of Somech and the Improved System Technology (IST) 
product of McDonnell Douglas Automation developed by Gane and Sarson. 

Some of the techniques have been automated and can be used on a 
computer. Tektronix has automated the data flow diagram approach using 
DeMarco's book as a guide. Teledyne Brown Engineering has developed the 
Technology for the Automated Generation of Systems (TAGS) which con- 
sists of the following four software packages: storage and retrieval, config- 
uration management, diagnostic analyzer, and simulation compiler. TAGS 
is available for Apollo and DEC VAX computers; the Tektronix tool oper- 
ates on a VAX. In many areas at Sandia, personal computers are prevalent. 
The following personal computer software packages can be used for software 
design: 

0 Excelerator 

0 AutoCAD 

0 Action Diagrammer 

4.8.3 Data Flow Diagrams 

The following paragraphs give an example of Yourdon's data flow dia- 
gram and mini-specification approach as an example of a design and doc- 
umentation technique. A discussion of the graphical technique is given by 
DeMarco [DEM78]. 

A data flow diagram (DFD) is a graphical technique for representing 
information flow. The data flow diagram is also known as a data flow graph 
or a bubble chart. Figure 3, labeled DFD 0, gives the top level of a data flow 
diagram. User input which is external to the system is depicted by a box. 
Processes are shown as circles, while the flow of data between the processes 
are indicated by the arrows. Figure 4 (labeled DFD 2) is a more detailed 
break-down of process 2 (Design) in DFD 0. The final figure (5) is called a 
mini-specification and gives additional detail on process 3 (detailed design) 
in DFD 2. The data flow numbering scheme gives the number 2.3 to the 

25 



rcqui rem en t 3 - 

Require - document 

11QCT- ---. 
fcnl- 

re,qrn n ts 

l-l Users 

P de sign -' design- 
chonges document 

hardware- 
spec3 

Change 
Contrnl 

lmplernen- 
tation 

requested- 
software- 

m& coded- 7 
software 

product 

Figure 3: DFD 0 - Software Development Data Flow 

mini-spec, indicating that it is a further break-down of process 3 in the level 
2 DFD. 

The entire software system model can be depicted by a single bubble 
with arrows representing the input and output data. This top level diagram 
can be refined into a series of bubbles to provide greater detail about the 
software system. The refinement can be continued to additional layers to 
show any desired level of detail. 

4.8.4 Design Decomposition 

Myers [MYE78] discusses ways to decompose the design problem into 
modules. He defines a module as a group of executable program statements 
that are a closed subroutine and have the potential of being independently 
compiled and called from any other module in the program. The average 

26 



design- 
requirements- standards 

prelim- 
design- 

document desiqn 
review design 

design- 
modifications 

detailed 
design 

design 
review 

detailed- 
design- 

document 

Figure 4: DFD 2 - Design 

module size should be about one page of executable statements. The mod- 
ule size may vary quite a bit, depending on the computer language used 
in the implementation phase and the internal complexity of the module. 
Each module should be highly cohesive (perform one single function) and 
be loosely coupled to other modules (have few pieces of data passed between 
modules). As further reference, David King [KIN841 and Meilir Page- Jones 
[PAG78] discuss different types of cohesion and coupling in their books. The 
following rule of thumb also may prove useful in determining module size: 
if what a module does can be described by a simple sentence, then the level 
of decomposition is about right. 

The methodologies and tools discussed here are merely examples of de- 
sign tools available on both personal computers and mainframes. Volume 5 
of these Guidelines will provide details on these and other software quality 
tools available to Sandia personnel. 

27 



detailed design 
L , Marsupe 
11/20/85 
2.3 
I F  the design has gone through the change control process 

change control process 

prelim-design-document 

THEN incorporate the design-changes approved by the 

ELSE incorporate the design-modifications into the 

END I F  

DO (for all elements in the system structure) 
decompose the rudimentary system descriptions down 

write module descriptions listing inputs. outputs, 

create a detailed-design-document 

to module descriptions 

and the purpose of the module 

END DO 

END OF MODULE detailed design 
LEOB] 

Figure 5: Mini-Specification 

28 



5 Implementation 

5.1 Recommended Deliverable 

0 Structured Source Code 

Implementation is the translation of the detailed design into a computer 
language, a process commonly called coding. This section gives some sug- 
gestions on implementing good code. Well written source code is easier to 
read, test, debug, and modify. Many of the ideas in this section can be found 
in the book The Elements of Programming Style [KER74]. 

5.2 Coding Conventions 

Once a software project detailed design has indicated a specific program- 
ming language, coding standards for that project must be established. The 
specifics of those standards are not as important as is their establishment 
and enforcement: be consistent. This section presents generic coding con- 
ventions, i.e., concepts which apply to any language. 

5.2.1 Code Structure 

Good code reads from top to bottom. Avoid “spaghetti code”, Le. ,  
any code in which the flow of control jumps around the source file so that 
program flow looks like a bowl of spaghetti. If the code is readable from top 
to bottom, less time will be spent interpreting program flow. 

To aid in top to bottom flow use single entry, single exit control struc- 
tures. Some examples are IF - THEN - ELSE, DO - WHILE, and REPEAT 
- UNTIL type structures. Appendix D presents graphical representations of 
these control structures. Some languages, such as assembler, do not provide 
these constructs or only provide a limited set. Missing high-level constructs 
can be implemented using more primitive constructs such as sequencing and 
conditional jumps. [BOH66] 

5.2.2 White Space 

The use of white space (spaces, tabs, and carriage returns) can make 
code easier to read, and help show the logical structure of the code. Indent 
single entry, single exit control structures. Use blank lines when necessary 
to make the code less crowded. Consider the example on the next page. 

29 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
f u n c t i o n  : f o n t  

d e s c r i p t i o n :  S e t s  t h e  f o n t s  up. 
i n p u t s  : 
outputs  : 
c a l l s  : f o n t - s e t .  The a c t u a l  work r o u t i n e .  
*/ 
f o n t 0  
{ 
s t a t i c  char  * m H =  /* i n i t .  menu */ 

g l o b a l  v a r i a b l e  with p o i n t e r  t o  p r i n t e r .  
se t s  primary o r  secondary f o n t .  

< 
"Font S e l e c t i o n  Menu", 
"Change Primary Font It , 
"Change Secondary Font t t ,  
"Return t o  Main Menu" 
3 ;  

i n t  m r ;  
i n t  r e t = 0 ;  

do 
{ 
do 

{ 
m r  = menu(m,3) ; 
i f (  m r  == -1 ) p u t c h a r ( 7 ) ;  

/* d i s p l a y  t h e  menu above.*/ 
/* m r  is  s e l e c t i o n  number */ 

3 
while(  m r  == -1 ) ; 

s w i  t c h ( m r  ) 

case 1 : font -se t  ( t tp t t )  ; break;  
case 2 :  fon t -se t  ("s")  ; break;  
d e f a u l t :  r e t = l ;  break; 
3 

3 
while( r e t  == 0 1 ;  
3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. -  

30 



5.2.3 Names and Variables 

Use good mnemonics for names and labels. Some languages allow long 
names that can yield easy-to-read code. Use that valuable capability to its 
fullest extent. For example: 

CYLINDER-VOLUME = CYLINDER-HEIGHT * PI * CYLINDER-RADIUS ** 2 

Beware of languages that allow long names, but only use the first few 
characters for identification. The above example fails if the compiler uses 
the first eight characters to identify a variable name. 

Some languages limit a name to a small number of characters (e.g. ANSI 
FORTRAN 77’s limit is six). Good mnemonics can be generated by dropping 
letters from the end of a word: 

CYLVOL = CYLHEI * PI * (CYLRAD ** 2) 

Data must be mapped into the available data types in a given language. 
For example, temperature data might be mapped into real numbers. Some 
languages such as Ada provide a very rich and powerful environment for 
this task. Others such as LISP and FORTRAN provide a more primitive 
environment. The mapping should be done consistently throughout the 
program. Every variable may be explicitly typed or may be implicitly typed 
based on some special character in the variable name. Choose the mapping 
that yields the most readable and clear source code for the problem to be 
solved. For example, if a FORTRAN program requires only integers, then 
implicitly declaring all variables integers yields a wide-open environment for 
generating mnemonics. 

5.2.4 Modules 

Break programs into smaller, logically distinct pieces called modules. 
Modules are identified in the design phase of program development. 

Keep modules small. Use module complexity as a guide to limit the size. 
Modules should have about one page of executable lines of code. Modules 
of one page (total) are convenient due to readability. Module size can vary 
depending on the language used. 

Keep module interfaces simple. Pass the barest minimum of information 
to a module. Keep local information inside modules. When calling a routine, 

31 



the caller should pass only needed information, and the routine should return 
a well defined result. Pass information in a “need to know” manner. 

Write modules with a single entrance and single exit unless violating this 
rule results in improved clarity or readability. Three commonly occurring 
situations where multiple entrances or exits are useful are multiple loop 
exits, error handling, and data encapsulation [FAI85]. Before using multiple 
entrances or exits, closely examine the algorithm and try to redesign it to 
eliminate the multiple entrances or exits. 

The two following examples illustrate some of the code structures rec- 
ommended in this section. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* routine: message 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* description: sends a message string to the console 
* inputs: message location offset on stack (word). 
* 
* note: (includes length byte) 
* 
* This is a threaded routine, so no subroutine return. 
* outputs: none 
* called routines: chout 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 

* 

message of form (length, ’message string’). 
length = message length + 1. 
max length of message 254. 

hmess header 05, ’mess ’ ,OO, $0000 
move. w (a51 +, a1 get offset from stack 
lea (a4, ai) , a0 compute mess address,put in a0 
clr . 1 d6 
move. b (a01 + , d6 mess length to d6 

mtype subq.b #2,d6 fix count for dbcc 
loop move. b (a01 + , dO 

j sr $chout (a4) chout is offset to output routine 
dbf d6, loop done outputting chars? no, loop 
next yes, end. 

* 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

32 



C DESCRIPTION 
C 
C 
C 
C * NOTE: 
C 
C 
C USAGE: 
C 
C INPUTS: 
C OUTPUTS: 
C 
C VARIABLES: 
C 
C 
C 
C 
C 
C 
C CALLS: 
C 
C ASSUMPTIONS 

FGETC RETURNS THE NEXT CHARACTER IN A FILE 
EOF IS INDICATED BY CHAR(26): CONTROL-Z; 
CR: CHAR(l3) IS RETURNED FOR END OF LINE. 

FGETC READS A LINE AT A TIME AND RETURNS NEXT CHARACTER. 
DON'T USE IT FOR SINGLE CHARACTER TERMINAL INPUT. 

CHAR=FGETC(FILE-LOGICAL-UNIT) 

LOGICAL UNIT OF FILE 
NEXT CHARACTER 

CR - CARRIAGE RETURN CHARACTER 
EOF - END OF FILE CHARACTER 
LINE - CURRENT LINE OF TEXT 
LP - POINTER INTO CURRENT LINE 
LIJ - LOGICAL UNIT OF FILE TO READ. 

TRIM GIVES LENGTH OF LINE WITHOUT 
TRAILING BLANKS 

A SEQUENTIAL FILE HAS BEEN OPENED AS LU. 

C 
C 
C 

WHENEVER THE LINE POINTER IS ZERO, READ A NEW LINE 

IF (LP . EQ . 0) THEN 

33 



LP= I 
READ(LU, 1, IOSTAT=I)LINE 
LENGTH=TRIM (LINE) 

1 FORMAT (A) 

C 
C * * Processor Dependent Code: 
C I WILL BE -1 WHEN THE EOF IS REACHED, SO RETURN EOF CHARACTER 
C 

END IF 

Interpreting non-zero IOSTAT: 

IF (I .EQ. -l)THEN 
FGETC=EOF 
LP=O 

C WHEN LP PASSES THE END OF THE LINE, RETURN A CARRIAGE RETURN 
C 

ELSE IF (LP . GT . LENGTH) THEN 
FGETC=CR 
LP=O 

C 
C OTHERWISE RETURN THE CHARACTER AT LP 
C 

ELSE 
FGETC=LINE(LP:LP) 
LP=LP+ 1 

END IF 
RETURN 
END 

c------=--------------------------------------------------------- ___________________-------------------------------------- 

5.2.5 Portability 

Whenever possible, work in a standard language ( e . g .  ANSI FOR.- 
TRAN 7 7 ) .  TJse of non-standard features which inhibit portability should be 
avoided. Portability (the ease of transferring software from one environment 
to another) makes code reusability possible. Isolate non-portable parts of 
the program in subroutines or functions and identify the non-portable code 
with comments. If a portable version of the code is available, then include 
it in the comnients. Remember that any processor dependent code is non- 
portable. 

TJse symbolic names rather than explicit constants. For example: 

34 



C 
C EXAMPLE IN FORTRAN77 TO SHOW SYMBOLIC CONSTANTS 
C 
C LUOUT AND LUIN ARE THE LOGICAL UNIT NUMBERS FOR THE CONSOLE 

INTEGER LUOUT 
INTEGER LUIN 
PARAMETER (LUOUT=6, LUIN=5) 

................................................................. 

/* Whenever possible, parameterize the environment to enhance 
portability of symbolic constants, as with the constant PI: 

*/ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5.3 In-Line Documentation 

5.3.1 Comments 

Many persons have stated “Good code is self-documenting”. For most 
modern programming languages, however, this statement is false. Easy-to- 
read code can be written, but some in-line documentation is always neces- 
sary. 

The number of comments to include in a program depends on the lan- 
guage used. Assembly language programs should have frequent comments, 
while high level languages such as Pascal may need comments only at mod- 
ule boundries. When the code changes, update the comments so that they 
match the new code. Code maintenance is difficult enough without having 
the code and comments say two different things. 

5.3.2 Telephone and Pencil Tests 

Two useful tests to check code readability and comments are the tele- 
phone and pencil tests. The “telephone test” checks for code clarity. If code 
can be read aloud (over the phone) and someone else can understand it, then 
it is clear. Otherwise rewrite the code. The “pencil test” checks for inline 
documentation. It consists of reading through the code, pencil in hand, and 
then including any notations made as comments in the next revision. 

35 

, , , , , . .. , .-.. . . . . . I . . 



5.3.3 Module Header 

Document modules with an identifying header. The following example 
gives a general idea of the format; a suggested format for Sandia is provided 
in Appendix C. Other information may be added if needed. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

routine : beep 

description: activates the terminal bell "rings" times 
environment: DEC VAX; VMS 4.1 

usage : beep(rings1 

inputs : 
outputs : none 
problems: none known 
assumptions: terminal has a bell 
globals : 
calls : no user routines are called. 
*/ 

rings (Integer: # of times to activate the bell.) 

no global variables are changed 

beep(rings) 
int rings ; 

int i; 
for( i=i ; i<=rings ; i++ 

/* number of times to ring bell */ 

printf ("\007") ; 

} 
1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5.3.4 Module Separation 

In the example above, the module starts and ends with a line of stars. 
This is one method of separating modules that appear in the same file. Use 
some consistent method to separate modules. 

36 



5.3.5 Variable Descriptors 

Comment all variables individually. For example: 

SUBROUTINE FPUTC (LU, C> 

! !  THIS IS NOT FORTRAN-77 

CHARACTER*I C ! !  PASSED CHARACTER TO SEND OUT 
CHARACTER*132 LINE ! !  LINE BUFFER FOR OUTPUT 
CHARACTER*7 CCONT ! !  CARRIAGE CONTROL RETURN VALUE 
INTEGER LU ! !  LOGICAL UNIT OF OUTPUT FILE 
INTEGER LP ! !  LINE POSITION POINTER 

CYLINDER-VOLUME = CYLINDER-HEIGHT * PI * CYLINDER-RADIUS ** 2 
If the language you use does not allow in-line comments, put the variable 

descriptors in separate comment lines as illustrated below: 

C VARIABLES: 
C c -- PASSED CHARACTER TO SEND OUT 
C LII.JE -- LINE BUFFER FOR OUTPUT 

5.4 Data Organization and Libraries 

5.4.1 Data Organization 

Many programs perform operations on enormous amounts of data. Some 
scientific programs are now performing calculations on hundreds of millions 
of words of data. Poorly structured programs will lump much of the data into 
large monolithic data structures. For example, FORTRAN programmers 
tend to lump data into a common block called blank common because of its 
special properties. Such a poorly designed “data organization by default” 
makes a program difficult to debug, modify, and maintain. In particular, it 
is impossible to communicate only the needed information to a subprogram 
(the need-to-know concept) if all the data is lumped together. 

Apply the same modularity and design concepts used for developing 
subprograms to developing the data objects. Careful design of the modules 
in concert with careful study of the information flow will result in natural 
groupings of the data objects. Organize the data so these natural group- 
ings can be accessed individually. This will result in modular data. With 

37 



modular data, a module can access only those portions of the data it needs 
(need-to-know). This makes checkout, debugging and modification much 
easier. If you wish to change a part of the data or some of the data is being 
destroyed, you can go right to the code that accesses the data. 

5.4.2 Libraries 

Don’t reinvent the wheel on every software project; take advantage of 
code reusability. Some languages provide features specially adapted to cre- 
ate reusable code, e.g., Ada’s packages and generics. A library of general 
purpose modules can save much time in coding an application, and reduce 
the testing time. On large projects libraries may be necessary. Even in 
small projects a library can be useful. Machine dependent routines are good 
candidates for libraries. 

5.5 Summary 

Good code reads from top to bottom. 
Use single entry, single exit control structures. 
Use white space. 
Use meaningful names for labels and variables. 
Be consistent when mapping (data typing) variables. 
Use a consistent data mapping scheme that yields clear code. 
Break programs into page-long modules. 
Keep interfaces simple. 
Use single entries and exits for modules. 
Use multiple module entrances and exits 

Avoid language extensions. 
Update comments as code is changed. 
Use the telephone test for code clarity. 
Use the pencil test for inline documentation. 
1Jse consistent, descriptive module headers. 
Separate modules in a well defined manner. 
Describe all variables with comments. 
Organize all data. 
TJse libraries for general purpose modules. 

only if clarity and readability are improved. 

38 



6 Test 

6.1 Recommended Deliverables 

0 Test Set 

0 Test Set Documentation 

0 Test Results 

0 Test Set. The Test Set includes “rich” test data and relevant test 
procedures and tools to adequately test the application’s response to 
valid as well as invalid data. 

0 Test Set Documentation. The Test Set Documentation (or Soft- 
ware Test Plan) describes the test data, procedures, tools, and overall 
plan. 

0 Test Results. The results of the tests should be documented to 
identify all deficiencies discovered. 

Without adequate documentation of the test set and results, the testing 
process may be disorganized, resulting in incomplete application testing and 
hampered application maintenance. Inadequate or nonexistent test data and 
associated documentation may result in inadequate exercising of changes 
made to the application. Without development and use of an adequate test 
set, the application may not meet the requirements specification. 

6.2 Why Test? 

Studies have shown that testing accounts for 30-50% of the total appli- 
cation development effort [SH083], and currently is the primary method of 
determining whether a program or system does what it is supposed to do. 
While advances have been made in formal verification based on proof tech- 
niques, these techniques are tedious and are not easily applied without the 
help of automated tools such as verifiers. Additionally, a program’s “proof 
of correctness” is proving the provided input and output assertions, which 
may not be complete (see Gries, [GRI81] for these techniques). For indi- 
vidual programmers, testing continues to be the primary, if not the only, 
verification technique, and a vital, major part of the development effort. 

39 



Because of its importance and its potential impact on the development 
effort, testing requires careful planning and an understanding of what types 
of tests are applicable during the various stages of development. The fol- 
lowing discussion expands on these topics. 

6.2.1 S p e s  of Testing 

There are two basic types of testing: dynamic and static. [ICs821 

Static testing is evaluating a software program without executing it, 
whereas dynamic testing is based on execution of the program. Static testing 
spans each phase of the software life cycle. An example of static testing is the 
design review process. Static testing helps to ensure that the software meets 
project requirements and standards, and is of a sufficient level of quality to 
serve as a base for test planning. [EVA841 Examples of static testing are in 
the design and verification/validation sections of this document. 

This section will concentrate on dynamic testing, which seeks to validate 
the program’s function (black box testing) and to exercise its various paths 
and branches (also known as structure or white box testing). Volume tests 
and stress tests may also be useful [KIN84]. Volume tests involve provid- 
ing more data than the system will normally handle; stress tests force the 
application to operate at  its maximum rate. A great deal may be learned 
about an application by examining its response to these tests. 

Volume and stress tests are applicable in both real-time and “normal” 
(delayable) applications. Some problems may not surface until a large 
amount of data is entered into the system. One example where volume 
testing was useful to one of the authors concerned finding a non-unique 
entry in a file index database. The probability of finding an error in the 
database schema was increased by introducing a large number of files. 

6.2.2 Preparing for Test 

An important phase of testing is planning. 
Planning should include how to observe results, and compare the results 

with desired behavior. The comparison is not always a straightforward task. 
The system requirements specification (SRS) can help in this area. The 
SRS should provide a complete description of the application’s behavior, 
the needed functions, and related constraints. 

Conduct module or unit testing. 

40 



As pieces of the project are completed, these modules should be tested. 
(Please note that module and unit are used interchangeably in this section.) 
It is easier to locate errors when the number of possible interactions is limited 
to a small number of modules. Only after these modules have been debugged 
should they be incorporated into the program. This is the basic approach 
used in bottom-up testing discussed later in this section. If errors are found 
and modifications made, previous tests involving erroneous sections should 
be rerun. Testing is truly an iterative process. Therefore, ... 

Test the application early and often. 
Problems revealed early in the design process are orders of magnitude 

easier and cheaper to correct than problems discovered once the program is 
in production. Data structures and algorithms based upon design decisions 
are often subtly intertwined. Modifying the application’s design to correct 
bugs late in the design process may involve a great deal of algorithm and 
data structure modification, which could introduce further bugs. 

A vital part of software testing concerns choosing data that wall ade- 
quately test a n  application. 

The following guidelines discuss how to develop such a test set. 

1. Exhaustive testing of all possible input values is not possible for many 
programs. Therefore, test data should be “rich”: small enough to be 
manageable, yet comprehensive enough to cover the domain of input 
values. These “rich” test cases should contain data to exercise as 
many functions and traverse as many paths as possible. Minimally, 
each statement should be executed once during testing. Test data 
should also deal with boundary conditions. 

2. The sooner the test data set is developed, the better. This can serve as 
feedback for other phases of the life cycle. For example, requirements 
for which it is difficult to formulate test data or determine the expected 
output are probably unclear and should be restated. 

3. Test data should be documented as to what is being tested, and what 
the expected results should be. This set should be maintained for later 
use in checking out code modification. 

4. Test data should include invalid as well as valid information. 

5 .  Obtain some test data from the user community. Data that is typical 
of the application’s ultimate environment should be included in the 
test set. 

41 



6.3 Top-down and Bottom-up Testing 

There are two major testing approaches used in subsystem and module 
testing: top-down and bottom-up. These methods are normally used in con- 
junction with topdown and bottom-up software development, respectively. 

Topdown testing starts at a high, subsystem level; subordinate routines 
are initially dummy routines. After subsystem testing, a module in the next 
level in the procedure tree is implemented and tested. This process continues 
until all modules in the subsystem have been implemented. 

Bottom-up testing is the inverse of top-down; the functions in a module 
are tested. Modules are combined into a subset of the subsystem and tested. 
This cycle continues until the entire subsystem is built and tested. There 
are advantages and disadvantages with each approach. The advantages of 
topdown testing are: 

1. Design errors may be identified more quickly, as these errors generally 
are inherent in the top portions of the system. 

2. A demonstrable system is available early in the project, which may be 
good for morale as well as to prove/disprove feasibility of the system. 

3. Major interface errors may be discovered earlier 

The disadvantages of top-down testing are: 

1. It may be difficult to provide dummy routines that still adequately 
test the subsystem’s functionality. 

2. Test output may be hard to observe - many systems do not, produce 
output in the higher levels of the subsystem. 

The advantages and disadvantages of the bottom-up approach are the 
inverse of topdown testing. It is easier to observe a test’s output, but no 
demonstrable working system is available until all the modules are tested 
and in place. 

There is no one way to test an application. One approach may be supe- 
rior in a particular application, but not in another. A combination of the 
two methods (sandwich) may be useful. This approach is predominately top- 
down, with bottom-up testing performed on some modules and subsystems. 
The development team can use both testing and integration techniques to 
their fullest advantage. 

42 



6.4 Software Testing Stages 

stage is a natural consequence of the previous stage. 
distinct phases in the testing process. 

Software testing, like software development, should occur in stages. Each 
There are several 

6.4.1 Unit or Module Testing 

As a module is developed, its functions are tested to verify correct op- 
eration. Structure tests (traversing as many paths as possible) should also 
be performed. A good rule of thumb is to introduce modules incrementally. 

6.4.2 Subsystem Testing 

Modules forming a subsystem are tested for correct cooperation and 
communication. At this point, an assumption is made about the correctness 
of the individual modules. Integration of units into the subsystem may be 
done using a bottom-up, top-down or “sandwich” (combination of top-down 
and bottom-up) approach. Careful planning is required to coordinate the 
development effort so units are available for integration when required. 

6.4.3 System Testing 

This stage of testing is performed when all of the subsystems are inte- 
grated into the final system. Testing at this point focuses on locating design 
and coding errors undetected by prior design reviews and walkthroughs. 
Additionally, error recovery, throughput, capacity and timing considerations 
are examined. The system’s operation is verified against the requirements 
specified in the system requirements specification. 

6.4.4 Documentation Testing 

User guides should be tested for completeness and accuracy. The guides 
should be used during the system test phase before the application is turned 
over to users for acceptance testing [KIN84]. User guide examples of pro- 
gram operation or system function should be tested, and these test cases 
should be made part of the total test data set. 

6.4.5 Acceptance Testing 

Acceptance testing involves testing the system with “real” data by the 

43 



organization who will be using the system. (Up to this point, the testing 
is usually performed by developers.) The applicat,ion should be installed in 
the production environment for this stage of testing. 

6.5 Testing Real-Time Systems 

Programs in a real-time system present challenging testing problems 
that demand a higher testing standard. Real-time systems are those sys- 
tems whose processes must respond to events under time constraints. If 
the system's response is not timely, information may be lost. Due to the 
types of applications for which real-time systems are developed, software 
errors can lead to disastrous consequences. Thus, the nature of real-time 
functions and their associated complex time-dependent interactions present 
additional testing problems involving more stringent timing and storage con- 
straints. More intensive testing is needed to achieve a reliable operational 
stat us. 

The attributes of real-time systems that complicate the testing effort can 
be summarized as follows. 

1. Magnitude of the programming effort - Many real-time systems 
have a very large number of programs that have to be interconnected 
and tested. 

2. Repeatability - Because of slight differences in timing, the same se- 
quence of test case inputs, phased slightly differently each time, may 
result in different' outputs. 

3. Equipment interaction - Many real-time systems involve multiple 
processors that must exchange information. Development of the soft- 
ware for the differing processors typically is performed by machine 
oriented groups of personnel who work in semi-isolation to produce 
their machine peculiar subsystems. As two or more subsystems are 
tested and integrated, the lack of communication may be felt. 

4. Program interaction - Several programs will typically share the 
computer at the same time. Without strict control of interfaces, sig- 
nificant errors can result because of unplanned or erroneous program 
interact ion. 

5. Programming complexity - Due to timing and execution constraints, 
real-time systems are frequently developed in assembly language. Soft- 
ware development is much more complex because of these constraints. 

44 



Extensive testing is required to eliminate programming errors. In ad- 
dition, real-time systems will usually contain more decision points than 
batch oriented or scientific computation programs. 

6.  Simulation - Another consideration in the testing of real-time sys- 
tems involves the credibility of testing in an environment other than 
the one in which the system will eventually operate. In many in- 
stances software development is done on “cross-compilers’’ or “cross- 
assemblers,” where one processor produces executable code for a differ- 
ent processor. Module testing is often done on software which emulates 
the hardware environment in less than real-time, so timing problems 
are sometimes masked. Testing of real-time systems is normally first 
performed at a test facility using simulated input data before moving 
to the operational site. An extra effort is necessary to simulate with 
reasonable exactness the operating environment and “live” input. 

7. System operation - A final attribute which complicates testing of 
real-time systems occurs after a system has been implemented. After a 
real-time system is operational, it becomes especially difficult to isolate 
and correct errors, thus the importance of adequate pre-installation 
testing is amplified. 

The following phased approach could be used in conjunction with the 
testing methodology described elsewhere in this section to facilitate the test- 
ing of real-time systems. This approach is oriented around the validation of 
subsystems. Each subsystem consists of a set of programs that accomplish 
a single processing function. The testing begins with the exercising of in- 
dividual subsystems one at a time and then progresses to testing multiple 
interacting subsys tems. 

0 Phases I and I1 - Unit and subsystem testing (covered previously in 
this section). Because of the complexity level and asynchronous na- 
ture of real-time systems, fully testing new features and changes for 
undesirable side effects is very important. 

0 Phase I11 - Test the entire configuration (system testing). Simulated 
inputs are used to test more than a single subsystem at a time in order 
to test the subsystem interaction. A major objective of this phase is 
to stress the system and to determine its throughput capacity. This is 
accomplished by loading the system beyond its required capacity and 
observing whether the system takes the proper emergency measures. 

45 

-....I__._ ^ . . - 



Also, invalid data or messages are input to observe whether the system 
properly handles or rejects the invalid data or condition. 

0 Phase IV - The phase consists of a trial operational period at  the oper- 
ational site. This is required because it is very difficult (impossible) to 
create a simulated data environment that is identical to the operational 
environment and which can test every live data input condition. This 
testing phase is also an opportunity to conduct user training. This pe- 
riod concludes when the incidence of errors is reduced to an acceptable 
level and the system performs smoothly. 

6.6 Test Documentation 

The quality of test documentation can dramatically affect later stages of 
the software life cycle, particularly maintenance. Determining the amount 
of test documentation necessary for a particular project can be answered by 
the following questions: What would be of interest to me: 

a if I were managing a software project, and announcing i ts  completion? 

0 if I were a new member of a “mature” software project? 

Unit testing normally is conducted by the program unit author. A test 
log during this phase of testing may be useful for later test phases. 

System and acceptance testing requires documentation of the tests. Doc- 
umentation may include a test plan, test design specifications, test case spec- 
ifications, test log, test incident report or test summary report. The test 
case specification may include a test matrix listing application functions and 
paths an.d the data sets that test those features. General procedures and 
tools such as code profilers, test case generators, and driver programs useful 
in testing the application should be documented. The coding and documen- 
tation guidelines pertaining to structure, white space, names, and in-line 
documentation presented in subsections 5.2 and 5.3 should also be applied 
to test procedures and test data sets wherever possible to improve readibil- 
ity and maintainability. For additional information on test documentation 
refer to [SSGV~] and [IEE83t]. 

6.7 Debugging 

Although debugging and testing are terms that are often used inter- 
changeably, they are really distinct processes. Testing determines whether 
errors exist in an application; debugging diagnoses and fixes the errors. 

46 



Debugger: 
DDT 
DEBUG 
DEBUG 
DBX 
DEBUG 
CYBER Interactive Debug 

Table 3: Example Interactive Debuggers 

Available on: 
CTSS 
ELXSI 
VAX/VMS 
UNIX 4.2 
IBM PC (Professional FORTRAN) 
CDC NOS 

47 

.~. . . . ... .-..., . . _.I - - . . 



7 Operation and Maintenance 

7.1 Recommended Deliverables 

0 Maintenance Documentation 

0 Training Plan 

0 User’s Manual/Operating Procedures 

0 Maintenance Documentation. Well documented code and the soft- 
ware design document provide the backbone of maintenance documen- 
tation and the starting point for determining training needs. Every 
software professional has been exposed to inadequately documented 
code, usually when trying to trace out the source of a problem. 

0 Training Plan. The preparation of a well thought out training plan 
is an essential part of bringing a system into smooth operation. If the 
people, documents, and training techniques are not considered in the 
early planning for a new system, resources may not be available and 
training will be haphazard. 

0 User’s Manual or Operating Procedures. A user’s manual is 
organized to contain practical information for the individuals required 
to put the software into action. Depending on the size and type of 
system, operating procedures may be required as a separate document 
to cover management of the logical and physical components. Without 
a properly prepared user’s guide or operator instructions, either the 
time of the user will be wasted determining what to do, or the system 
will be inappropriately used, or both. 

People are the key ingredient in any system. Providing adequate educa- 
tion initially, and on a continuing basis, is absolutely essential if a system 
is to achieve its objective. The alternatives for providing the training may 
be open to choice, the need for training is not. Depending on the project, a 
few pages of information, or a wide range of documents and approaches may 
be necessary. This chapter will present broad coverage of ideas for system 
operation and maintenance. 

48 



7.1.1 Who Needs Training? 

Three categories of people must receive some type of training in a new 
system. 

The users are those who obtain a service from the software. These cus- 
tomers of the system may need an action, a computation, or a printed page. 
This is the group that should have been represented in the analysis activity 
of the requirements phase as needs were identified. These users now must be 
made aware of what the system requires, what it provides, and how it meets 
the identified needs. Acceptance testing is not complete until the customer 
is able to use the system to perform the design intent. Training can be a 
two-way street. The people using the software will provide some excellent 
feedback for system improvements. 

The operating personnel are the second category. These are the peo- 
ple who will manage the system. They are involved with preparing input, 
processing data, and operating the logical and physical components. 

A third group requiring training is the maintenance programmers. Even 
if the organizational philosophy is that the developers stay with the system, 
normal attrition will soon bring new people to the staff. Well documented 
code and the software design document provide the manuals for this training. 
A discussion of the need for in-line documentation appears in the chapter 
on implementation. Documentation tells how the design was translated to 
code and shows the expected result to be verified by testing. The close 
association of documentation with the source code has the advantage of 
making a complete story available in one place for maintenance personnel. 

If the system is to receive the same level of support as the developer 
would give it, there needs to be a planned program for teaching subse- 
quent maintenance programmers the basics of the business that the analyst 
learned when the project was initially studied. Too often it is assumed that 
the programmer understands the system simply because he knows how to 
make changes to the code. Maintenance programmers need information on 
the interrelationship of problems and needs that sparked the development 
project. They need to understand the technical, human, and organizational 
parts of the operational environment. 

7.1.2 Training Approaches 

It is easy to calculate the costs of training. The time and materials used 
fit the budget mold. More difficult to calculate is the cost of insufficient 

49 

. / I  . , , . .^.. .- . .. , 



training. If a system is not utilized due to lack of understanding, the cost 
of the system is wasted. Probably the greater loss is the failure to make use 
of available information. Training is not something tacked on to the end 
of a project. The preparation of a well thought out educational plan is an 
essential part of the system implementation process. 

To sucessfully provide people with the training required for the use and 
operation of a new system, it may be necessary to utilize several different 
approaches or combinations of them. These approaches may include: 

0 Group Instruction - This can be the best way to reach many people 
and provide them with an overview of the system. 

0 On-Line Help - The people who participate in group instruction 
may not use the system frequently. Through comprehensive on-line 
help this group can obtain satisfactory service. Another approach is 
the use of menus to move to the desired action. Menus are a burden 
to the frequent user, so there also must be a by-pass for the expert 
user. 

0 Procedural Training - In this method the individual is provided 
with written procedures describing the job tasks. This booklet may 
include a formal description of the system with detailed attention given 
to the outputs. To round out this training the individual would have 
an opportunity to ask questions of a trainer alone or in a group session. 

0 Tutorial Training - This technique provides personal training and 
may be necessary where many new ideas are introduced. It can provide 
one-on-one training for new user, operator, or program maintenance 
personnel. Although this can be fairly expensive, it assures the trainee 
will have a satisfactory understanding of the system. 

0 Simulation - A simulated work environment, using the data, proce- 
dures, and equipment involved, provides a medium for the individual 
to perform the proposed activities until a satifactory level of compe- 
tence is achieved. This technique would be used for operating person- 
nel. 

0 On the Job Training - This is the usual method of training op- 
erating personnel. The individual is given simple tasks and specific 
procedures to start out. As these tasks are mastered, additional steps 

50 



are assigned. Although it has the appearance of providing immediate 
results or production, it can be a long and expensive approach. 

0 Information Center - The primary objective is to train existing per- 
sonnel. However, training is rarely a one-time effort. Careful planning 
can result in a meaningful training mechanism which can be utilized 
by the organization on a continuing basis. This approach will justify 
the investment in more expensive aids and programs. The tools can be 
incorporated into an Information Center where consultants teach the 
users to help themselves. At such a center the user can get as little 
or as much training as is needed, and can get it immediately. The 
idea is as applicable to accounting and purchasing systems as it is to 
engineering information systems. 

0 Train Trainers - Another way to build for future training require- 
ments is by training trainers. This will provide the select group of peo- 
ple who can deal with day-to-day problems. It creates more experts 
for the users or operating people to consult. It gives the system per- 
manency by providing for employee turnover without making smooth 
performance dependent on the availability of the original analysts and 
programmers. 

Regardless of the training approach selected, the effort should begin with 
a presentation of the overview. The overview can be the introduction of a 
document, the top screen of the menu set, or formal class presentation. 
Often training begins with a single task and then moves from task to task. 
The individual can better relate to the significance of each task and the 
process required if it is introduced by a system overview. 

7.2 Manuals and Procedures 

A user’s manual is defined in NNWSI SOP-03-02 [SOP851 as “a manual 
which allows a peer to understand the results produced by the software, to 
run the software, and to install it on an appropriately equipped computer.” 
Complete documentation would include the theory of the original work, an 
in-depth explanation of the code, user/operator instructions, and a broad 
set of test problems. Project complexity, hazard, and liability dictate the 
need for this type of coverage. However, the usual case is that the user’s 
manuals are targeted to a particular level, group, and coverage. 

51 



User’s Manuals and Operating Procedures are one way for management 
to exercise control over the activities of the organization. The purpose is 
to uniformly communicate what activities are to be performed, when, how, 
and by whom. The primary use of these documents is to assist in training. 
They also promote standardization and provide a guideline for system audit. 
The specific content of each procedure depends on the activity it describes. 
In general the following questions should be answered: 

0 What activity is being described? 

0 Why is the activity performed? 

0 Who must perform the activity? 

0 Where is the activity performed? 

0 When is the activity performed? 

0 How is the activity performed? 

An excellent format for writing procedures is the Information Mapping 
Method (a registered trademark of Information Mapping, Inc.). Classes in 
the use of this method for report and procedure writing are regularly held 
at Sandia. This is the method now used in the preparation of the Sandia 
Laboratories Instructions (SLI’s) . Information Mapping uses the principles 
of how the human mind organizes information. The heart of the method 
is a component called the Information Block, which replaces the traditional 
paragraph. Each Block has a label that reflects the purpose and content of 
the Block. Standards for labeling, graphics, and formatting Blocks are an 
integral part of the method. 

In compiling manuals, consideration should be given to providing a flex- 
ible format for content and update. If a user has no need for 3 complete 
set of system procedures, the manuals at a specific location should contain 
only the required procedures and an index to the complete set. A simple 
numbering system should be used to make it easy for users to update their 
holdings. Use of a loose leaf binder promotes both selectivity in content and 
ease in filing replacement pages. Weapon manuals are governed by detailed 
specifications for their construction, and can be a source of ideas for manual 
preparation. 

52 



7.3 Conversion 

+- 

Many software developments at Sandia have sought to automate man- 
ual methods or were motivated by advantages inherent in new technology. 
Conversion from an existing system to a newly developed system presents 
some interesting challenges. A primary concern in planning for training is 
the nature of the system being replaced. The success of a well designed 
and properly developed system may depend on how well the conversion is 
executed. When a new system produces inaccurate information, it can leave 
a mark that remains long after the problem is solved. The conversion must 
be planned carefully and woven into the training plan to avoid a credibility 
gap- 

7.3.1 Conversion Preparation 

Files are constructed during module and program testing to exercise the 
system without risking functional data. In the last stages of program testing 
a specific conversion plan for the existing data is prepared. It identifies 
any special start-up procedures, the schedule for file creation, acceptance 
criteria, and transfer of operating functions. It will be necessary to create 
files by collecting and organizing data in a specific format on a given storage 
medium. It will also be necessary to convert files by taking existing files 
and modifying them in format, content, and storage location. Elaborate 
control procedures may be required to ensure the integrity of the converted 
data. Assuring that all affected parties are aware of the procedure is a vital 
communications task. 

A major system will probably involve three types of conversion: equip- 
ment, data processing method, and procedural. The change to improved 
equipment may not involve changing the logic of the application, but it will 
mean putting the logic in a coding structure which can be processed on 
the new computer. The data processing method can change from a manual 
or tape handling process to a terminal-controlled or computer-to-computer 
process. A procedural conversion can involve changing both the kinds of 
activities and the sequence in which the activities are performed. 

7.3.2 Conversion Approaches 

The three basic approaches for accomplishing the conversion to a new 
system are direct, parallel, and modular. 

53 



Direct conversion would be most applicable when the design of the new 
system is drastically different from the old system and comparisons between 
systems would be meaningless. This approach would also be used if the new 
system is small or simple. 

Parallel conversion is the simultaneous operation of the old and new 
system. The outputs from each system are compared and reconciled. This 
approach provides a high degree of protection from a system failure. The ob- 
vious disadvantage is the cost of maintaining two systems. This means that 
the plan should call for periodic reviews with users and operating personnel 
so that reasonable criteria are set for stopping the dual systems, either to 
rework the new or to cut over to it. 

Modular conversion refers to implementation on a piecemeal approach. 
This allows a partial commitment without affecting the entire operation. 
The piece could be the whole system in a particular locality or a part of the 
system installed across the board. This has the advantage of minimizing 
the risk of failure, but it is not always feasible because of the system, the 
organization, or the time it takes to complete the installation. 

7.4 Maintenance 

One of the realities at Sandia is that application programs, e.g., scientific 
simulation codes, may evolve from other codes. Such programs can become 
unwieldy and difficult to maintain. Maintainers are adverse to removing 
unused code because they fear someday it may be required, or they are ap- 
prehensive of unseen coupling, or they are following the homespun wisdom, 
“If it ain’t broke, don’t fix it.” 

How to handle maintenance? Carefully - but apply these guidelines: 

0 Conduct an analysis phase (in lieu of the requirements phase) to: 

- determine what modules and documentation will be affected. 
- establish change control procedures. 
- establish standards, practices, and conventions. 

0 Where possible, re-write affected modules to bring them into compli- 
ance with the agreed upon standards, practices, and conventions. 

0 Where possible, follow the phases documented in these guidelines 
(analysis, design, implementation, test, operation and maintenance). 

Section 8.5 provides a checklist for maintenance programmer responsibilities. 

54 



- .  

.- 

8 Configuration Management 

8.1 Recommended Deliverables 

0 Configuration Management Plan 

0 Baseline Table 

0 Change Table 

0 Configuration Management Plan. The Configuration Manage- 
ment Plan lists all modules used by the project, module locations, 
personnel responsible for controlling changes and change procedures. 

0 Baseline Table. The Baseline Table lists modules and versions in 
the project’s baselined system. 

0 Change Table. The Change Table lists all changes and enhancements 
made to the modules. Additional update supporting documents reflect 
changes and enhancements made to the system. 

8.2 Why Configuration Management? 

Changes must be managed right from the beginning of a project, whether 
developing a new system or modifying an existing one, working with a large 
team or alone. Any project evolves through additions to the system re- 
quirements specification document, the design reviews and changes in the 
structure of the design, coding development and testing, module testing, 
system testing and requests for changes and enhancements. Configuration 
management is the process of controlling these changes and enhancements. 

The advantages of configuration management include 

0 protecting the interests of both the software developer and the end- 
users 

0 providing continuity to a project even as personnel change 

0 identifying a baseline which contains code and supporting documents 
at a specific point in time 

0 validating new baselines by independent audits. 

55 

, , ,  , . _  .... ”.. ._I.. ..__ .... ~ . . __ lll.._l---.. . 



A baselined system is the set of modules that has been system tested during 
development or is being used by the end-users. A configuration management 
plan describes the mechanism for establishing a new baseline and certifying 
the new baseline. 

8.3 What Is Configuration Management? 

Configuration management is the management of changes in the soft- 
ware (and associated documentation), and is applicable to the development 
activities as well as the maintenance activities. Managing changes to a soft- 
ware project rnay be easier for a single individual than for a team of people. 
However, being the sole developer and maintainer of the project has its pit- 
falls, the chief one being the tendency to ignore configuration management 
because all changes are funneled through that single individual. And, as the 
project expands or stabilizes, the individual must remember many details 
such as what changes or enhancements were made and why, which end-user 
has which version, which version of the modules is the latest, which versions 
were in the previous release of the system. 

During the design phase, a project leader should implement a config- 
uration management plan. This act forces discipline into the project by 
controlling changes. A configuration management plan may cover one or 
more phases of the software life cycle. Consequently, a project may have 
one or more plans or a plan with one section per phase. Before releasing the 
system to the end-user, the software development organization drafts the 
configuration management plan for maintenance, which is then approved by 
the end-user’s organization, the &A organization for critical software, and 
other pertinent groups. 

A configuration management plan should: 

0 identify the software files and the supporting documents; 

0 define the methodology for assigning and changing version numbers 
for both software and documents; 

0 define a procedure for each of the following activities: 

- a user requesting changes or enhancements 
- a programmer implementing changes to the software during the 

- a librarian integrating software into the library 
development or maintenance cycle 

56 



0 illustrate the change or enhancement form and the response, disposi- 
tion, or resolution report and explain the items listed on the forms; 

0 record release dates for new versions of software and documents and 
state the support termination date for older versions; 

0 describe audit controls for checking compliance with the plan; 

0 establish a procedure for archiving backups of master and versions, 
documents, and test cases. 

The plan may need to address other items, dependent on the nature and 
scope of the software and the end-user’s requirements. A more detailed, 
comprehensive guide can be found in the IEEE Standard for Software Con- 
figuration Management Plans [IEE83c]. 

Documenting changes made to modules and uniquely identifying each 
module is a must for everyone. Anyone can easily remember the minor 
changes made today, yesterday, or even last week, but six months later? 
The easiest place to document any change is in the source code itself. In 
addition, a change table is a useful tool for tracking unique modules by 
version numbers, dates, and the changes or enhancements made. The table 
is also called a project log, logbook, or a change document. Such a table 
should contain the module name, its version number, date of change, the 
responsible programmer, the locations of the change and a summary of the 
change. Table 4 provides sample entries from a change table. 

A baseline table records each version of the system with all the mod- 
ules that have been released or baselined. The table records the modules 
and their unique identifications, the date released, and the personnel who 
released the module. To identify each module in a released system requires 
accurate recordkeeping. The next generation of the system contains the 
latest changes or enhancements on some of the modules. After testing and 
verification of the test results, it will become a released or baselined sys- 
tem. Now, suppose some bug is found in the newly released system. It is 
desirable to find the version where the bug was introduced. Then, the bug 
can be corrected in the appropriate context or if possible, the system can 
be rebuilt temporarily with an older version of the module prior to the bug. 
An example of a simple baseline table showing five entries is in Table 5. 

57 



Version 

I. 002 

1.101 

1.430 

NCDRILL Log System 
Date Person Program Subroutine 

09/10/85 K.T. Wilson RETRNCINF Put-land 
--Increase the format size from F10.4 to F12.4 for the 
x and y location on the error messages 

10/25/85 K.T. Wilson RETRNCINF FIND-IDX, 

--Increase maximum length of custodian field of the 
GET-IDX-TABLE-ENTRY 

file index table from 2 characters to 3 characters 

01/31/86 L. Jones DRILL I NG Get-title, 
Punch-driver, 
Append-comment, 
SNLA-write-holes, 
Tool-spindle 

The first line has the 
--Lab requested a set of comment lines be added 

t o  the drilling holes file. 
unique artwork number. Subsequent lines list each 
tool number and the drill size. 

Table 4: Change Table Sample 

Updating all the supporting documents is a very necessary part of any 
system. After every change or enhancement, the list of supporting docu- 
ments should be reviewed to determine the impact of the change. A small 
change can easily require extensive editing and additional explanations in 
any or all supporting documents. 

8.4 Change Control 

When a system is baselined, all the controls for changes must be rig- 
orously enforced or else the system can easily degenerate into an unmain- 
tainable, unreliable system. This does not mean that quick, emergency 
changes are not allowed. Rather, emergency fixes must be implemented as 

58 



CONFIGURATION ON THE CAD NETWORK 
Date Person Software Version 
11/04/85 K.T. Wilson CHECKNC.EXE 1.102 

01/20/86 K. T , Wilson DRILLING.EXE 1.420 

08/12/85 L. Jones GERMASKS.EXE 1.010 

02/04/86 K.T. Wilson PANELPTS.EXE 1.000 
02/06/86 K.T. Wilson PANELPTS.EXE 1.100 

Table 5: Baseline Table Sample 

documented in the configuration management plan. Commenting or using 
distinctly formatted lines can easily identify the emergency fixes throughout 
the source code. Later, the problem is routed through the formal change pro- 
cedure for proper analysis and appropriate action and a permanent change. 

A precise method governing changes to the software should be thoroughly 
documented and distributed to all interested personnel and end-users. The 
project should assign one person to serve as the librarian. This is a necessary 
function and should be a part of any project. Smaller projects will not have 
a full time librarian, but the job must be done. The librarian controls 
all baselined versions of the system and adds the new modules or revised 
modules to the latest to-be-released system. Nobody else has the authority 
to add modules to a system. Ideally, the librarian is someone other than the 
code developers, a luxury that may not be available to small projects. 

A project may have a change control board reviewing and approving the 
change or enhancement requests. The board may perform the independent 
audit for validating the modified software before that system is baselined. 
The board may have supervisors, quality assurance (&A) and other technical 
experts (including the project leader), and end-user representatives, depend- 
ing on the nature of the project and the requirements or design specification 
documents. The configuration management plan defines the board’s com- 
position and functions. Fairley [FA1851 discusses the change control board 
and its functions in detail. 

Change control can be done manually by adhering to strict record- 
keeping practices using the change table and the baseline table. Under 

59 



a manual system, the source code modules are still maintained in an elec- 
tronic file. Start every such source code file with a header of introductory 
comments. This prologue is different from a module header as described in 
subsection 5.3. The source code prologue starts a file (which may include 
several modules). Include the following information in the header: 

Hardware 
CDC 
CRAY 
IBM PC/DOS 
IBM mainframe 
VAX/UNIX 
VAX/VMS 
VAX/VMS and others 

Name of Author: 
Original Version Date: 
Name of Revisor : 
Revisi.on History : 
Name of Source Code File: 
Names of any Include files: 
Compiling Information: 

Software Tool 
UPDATE 
UPDATE 
(none known) 
LIBRARIAN, PANVALET 
SCCS, MAKE, RCS 
DEC/CMS, DEC/MMS, EDCS, Softool 
HISTORIAN 

Some of the above information may be inapplicable in some programs. In 
such cases use comments that are informative. 

Several software tools are available for building libraries and tracing 
changes in the software and supporting documents. A brief survey of com- 
puter systems (Table 6) reveals some of the software packages available. 

Table 6: Change Control Software Tools 

Using prepared forms to request changes or enhancements to the soft- 
ware is the best method for controlling the changes to the software. At least 
the problem can be evaluated and the action and priority of the change 
documented. For forms to be effective a user should receive some response, 
either written or oral. Both the change or enhancement request and the 
evaluation and disposition report are under control of the responsible orga- 
nization. If resources permit, problems or change requests may be reported 

60 



by using on-line forms. A database may be established that logs the prob- 
lems and records the pending status and subsequent resolution. The first 
two entries in Appendix F illustrate change control forms used by Y-12 
(Martin Marietta) [EDW85]. The third entry is an example of a form used 
at Sandia. 

8.5 Maintenance 

Most software engineering references agree that two-thirds of the lifecycle 
of software, in both time and resources, is spent on maintenance. Many 
Sandians can bear witness to the fact that for years they have worked only 
on maintaining software, never creating a software project from scratch. 

Software maintenance is the process of working with operational software 
to correct errors and to provide enhancements. Software maintenance is of- 
ten the most challenging job in the software life cycle when it should be the 
easiest. If guidelines such as those in this document have been not been con- 
sistently enforced during the development of the software, the maintainer’s 
job is difficult. 

Software changes or enhancements to a baselined module should be made 
only after careful analysis and approval by the project manager or the change 
control board. After the change is authorized, the following checklist can be 
used to assign maintenance personnel responsibilities: 

0 implement changes to the code 

update the internal documentation of the code 

validate the test sets in the baseline 

0 design new test cases as necessary, add the cases to the existing 
test set, and record the results on the new baseline 

revise the supporting documents (requirements, design specifica- 
tions, test plans, user’s manual, etc.) 

0 distribute the updated version of software and documents to the 
end-user sites and update the configuration control records on each 
site. 

61 



9 Verification and Validation 

9.1 Recommended Deliverables 

0 Formal Reviews 

0 Informal Peer Reviews 

0 Formal reviews. Formal reviews should be held at the end of each 
phase in the software life cycle. The formal reviews should assess 
the compliance with previous life cycle phase requirements and prod- 
ucts; satisfy the standards, practices and conventions of the phase; 
and establish the proper basis for initiating the next life cycle phase 
activities. [IEE85] 

0 Informal Peer Reviews. Informal peer reviews of the workprod- 
ucts (ie., the documents or code) should be used during each phase 
of the software life cycle. The informal reviews should address the 
same topics as the formal reviews, but in much more detail and more 
frequently. 

Recommended Deliverables for validation testing are listed in section 6. 

9.2 Why Verification and Validation? 

Verification and Validation activities are part of the quality assurance 
activities necessary to provide adequate confidence that the item or product 
conforms to established technical requirements [IEE83g]. Requirements are 
discussed in section 3. 

Verification is the process of determining whether or not the products 
of a given phase of the software development cycle fulfill the requirements 
established during the previous phase [IEE83g]. The phases in a typical 
software development cycle are shown in Figure 1. 

Validation is the process of evaluating software at the end of the soft- 
ware development process to ensure compliance with software requirements 
(IEE83gl. Careful planning, design, and implementation substantially im- 
prove the probability of meeting the requirements. But, there is no guar- 
antee the requirements will be satisfied. For example, you will not know if 
a real-time system will be fast enough without actually running it. Careful 

62 



testing, exercising and debugging of the actual software is required to Val- 
idate the software. Refer to section 6 for more information on testing and 
debugging. 

Boehm [FA1851 phrases the definitions as follows: 

0 Verification: “Are we building the product right?” 

0 Validation: “Are we building the right product?“ 

Note that verification activities can be applied to all phases of the soft- 
ware life cycle whereas validation activities are applied to the software pro- 
duced by the implementation phase. 

Verification and validation are used to determine workproduct confor- 
mance to specifications, detect defects as early as possible and improve the 
quality of the workproduct. Verification and validation activities use groups 
of people to analyze the workproduct and uncover defects. A software im- 
plementor can use systematic testing and debugging techniques to validate 
modules. Systems and subsystems can be validated by using formal valida- 
tion and acceptance testing. 

Verification and validation activities should be used as early as possible 
in a project. The earlier a defect is identified, the easier and cheaper it is to 
correct. An inconsistency between two models is much easier to correct in 
the design phase than in the testing phase. A defect in the coding is much 
easier to correct before copies of the software have been distributed. 

9.3 Reviews and Audits 

Reviews and audits use knowledgeable groups to uncover defects in a 
workproduct. They are used throughout the software life cycle. The reviews 
may be formal or informal. Formal reviews or audits are important project 
milestones. They should be formalities that demonstrate that a major phase 
of the project has been completed. Informal reviews occur throughout the 
life cycle. They are the “inch pebbles” that build milestones. 

9.3.1 Formal Reviews 

Formal reviews or audits are formal presentations for the purpose of 
assessing consistency and completeness of the workproduct. The reviews 
should assess the compliance with life cycle phase requirements and prod- 
ucts; satisfy the standards, practices and conventions of the phase; and 

63 



establish the proper basis for initiating the next life cycle phase activities. 
[IEE85] 

Formal reviews involve authors of the workproduct and people who are 
not authors, such as users, management representatives, quality assurance 
representatives and consultants. A formal review should be held at the end of 
a phase in the software life cycle, e.g., requirements specification (described 
in subsection 3.4), design (subsection 4.7), implementation, etc. Formal 
reviews can also be applied to critical parts of a project, e.g,, hardware- 
software interfaces. A formal audit or review should be a formality that 
demonstrates the informal audits and reviews have done their jobs, but at 
the same time provides management representatives a chance to review and 
provide comment. 

9.3.2 Informal Reviews 

Informal reviews and audits are used by the development team through- 
out the software life cycle. Members of the development team and others 
such as users, consultants and technical experts participate in the informal 
reviews. Management representatives do not participate in the informal 
reviews. The workproduct author uses a knowledgeable peer group to re- 
view his workproduct to assess compliance with items such as requirements, 
specifications, baseline standards, procedures, codes and contractual and li- 
censing requirements. Informal audits and reviews are much more detailed 
than formal reviews. Informal reviews look at the workproduct line-by-line 
and try to identify individual defects. Walkthroughs and inspections are 
two procedures for informal reviews that are widely used in the software 
engineering community and will be described in the following subsections. 

The informal reviews described below are consistent with the notion of 
egoless programming espoused by Jerry Weinberg [ WEI'Il]. Egoless pro- 
gramming is the concept that workproducts are the responsibility of the 
entire group irrespective of who is the author or cognizant person for the 
workproduct. Informal reviews differ from the strictest interpretation of ego- 
less programming because they may use people from outside the software 
development group. 

The next two subsections briefly describe two types of informal reviews; 
walkthroughs and inspections. Walkthroughs have been used for many years 
and are well described in many software engineering books [SOM85]. Inspec- 
tions are similar to walkthroughs but are more formal. They are newer and 
there is less information in the open literature [ACK84], [FAG76]. Because 



of this, inspections will be covered in more detail than walkthroughs. 

9.3.3 Walkthroughs 

Walkthroughs have been used for several years to systematically examine 
workproducts. The material being examined is presented by a reviewee and 
evaluated by a team of reviewers. 

A walkthrough team usually consists of a reviewee and three to five 
reviewers. One of the reviewers may be designated moderator. The moder- 
ator's job is to keep the walkthrough focused on identifying defects. Team 
members may include the project leader, other members of the project team, 
a representative of the quality assurance group, a technical writer or other 
technical persons who have an interest in the project. Customers and users 
may be in the walkthroughs during the requirements and preliminary design 
phases, but are usually excluded from subsequent walkthroughs. Managers 
should not attend walkthroughs. 

The workproduct should be distributed to the reviewers before the meet- 
ing so they will have time to become familiar with the workproduct before 
the meeting. 

A walkthrough tries to discover defects by examining the product line-by- 
line. The reviewee is normally the author of the workproduct being reviewed. 
The reviewee reads and explains the workproduct and the reviewers try 
to identify defects or inconsistencies. Defects are not resolved during the 
session. It is the reviewee's responsibility to correct the defects. A follow-up 
meeting should be used to inform reviewers of the problem resolution. 

Successful walkthroughs depend on establishing a positive, nonthreaten- 
ing atmosphere for the session. The workproduct is being reviewed, not the 
reviewee. The moderator should keep the walkthrough focused on finding 
defects and not allow personality conflicts and minor problems to get out of 
hand. Set a time limit of less than two hours. Walkthroughs should never 
be used for employee evaluations. 

More information on walkthroughs is available in (SOM851 or in the 
videotape [SDS]. 

9.3.4 Inspections 

An inspection is a peer review process for identifying defects in a work- 
product. A peer group of three to six inspectors looks at a workproduct 
line-by-line, and identifies and categorizes defects. Inspections are similar 

65 



to walkthroughs, except inspections are more formal in structure and docu- 
mentation. Inspections have formal entrance and exit criteria. Defects are 
classified according to type, class and severity. Documentation is generated 
for the individual inspection work, group work and follow up. The addi- 
tional documentation allows trends in defects to be spotted. These trends 
may be related to the language used (e.g., argument passing errors in FOR- 
TRAN) or programmer specific defects ( e . g . ,  programmer B makes more 
typing errors than any other type). 

Inspection Meeting Preparation 

An inspection must have well defined entrance and exit criteria. The 
entrance criteria for a software product may be a clean compilation and a 
successful pass through a standards and interface checker. The exit criterion 
normally is no defects. 

Once an author believes his product satisfies the entrance criteria he 
(or someone in authority) selects an inspection moderator and completes 
the Inspection Profile form (Appendix E). The moderator’s job is to check 
the workproduct for the entry criteria, decide whether or not to hold an 
overview, select the other inspectors, schedule the overview, schedule the 
inspection meeting, and be responsible for completing the Inspection Man- 
agement Report and Inspection Summary Report (Appendix E). 

An overview meeting may be required to provide the inspectors with 
needed background information. This presentation is normally given by the 
author. 

The inspectors prepare for the inspection meeting by studying the work- 
product and completing the Inspection Preparation Form. The author col- 
lects all material required for the inspection and distributes it to the inspec- 
tors. Each inspector should develop an understanding of the workproduct, 
note places where the understanding is incomplete and note places where 
the workproduct appears to have defects. Inspectors should defer detailed 
analysis and classification of defects until the meeting. The amount of time 
spent in preparing for the inspection should be approximately equal to the 
planned meeting duration. Each inspector should complete the Inspection 
Preparation Log (Appendix E). 

Inspection Meeting Activities 

Defects are identified and classified in the meeting. The meeting should 

66 



have a well defined time limit that should not exceed two hours. The moder- 
ator reviews the inspectors’ Preparation Logs and should hold the meeting 
only if the inspectors have adequately prepared for the meeting. The meet- 
ing should be postponed if the preparation time is insufficient. 

Each participant in the inspection meeting has a well defined role. Ev- 
eryone is an inspector. Some of the inspectors also have the duties of mod- 
erator, reader and recorder. The moderator and recorder may be the same 
inspector. The moderator must be able to guide the meeting, understand 
the goals of the meeting, and be an objective party. The reader is NOT 
the author. The reader paraphrases each “line” aloud for the group. The 
inspectors interrupt the reader with questions and concerns, and identify 
defects. The inspectors do not correct the defects, as this will be the au- 
thor’s responsibility. The recorder documents the defects in the Inspection 
Defect List. The author is also an inspector. He is an extremely important 
inspector because he knows the most about the workproduct history and 
structure. He should be responsive to questions and should not be defen- 
sive. Using a reader that is not the author is an important application of 
the egoless programming concept. 

Defects are handled in a well defined manner. Defects should not be 
corrected during the inspection, although trivial defects such as typing er- 
rors may be resolved. Defects are categorized depending on the particular 
workproduct. In general, the type, class, and severity are defined. The de- 
fect type for a software product may be interface, data, logic, input/output. 
The defect class for a software product may be missing, wrong or extra. The 
severity may be major or minor. For a more complete discussion refer to 
[ACK84], [FAG76], or the videotape [FOW85]. 

Inspection Meeting Follow-up 

At the end of the meeting, the Inspection Defect List is reviewed and 
the workproduct disposition is determined. If the workproduct satisfies the 
exit criterion, then no rework or re-inspection is needed. If the exit criterion 
is not satisfied, then the group can decide if a rework or re-inspection is 
needed. If the defects are minor, the author may correct them and meet 
with the moderator. The moderator will check the rework and determine if 
the exit criterion is satisfied. If the defects are not minor, another inspection 
meeting may be required. 

Besides completing the Inspection Summary, the moderator is responsi- 
ble for the inspection meeting follow-up. He may have to verify corrections 

67 

I )  , . . ..“rn, I . .._ ..._ ..̂ ._ .... 



for a rework. 
The documentation is a very important part of the inspection process. 

By documenting and classifying defects, trends may be identified and statis- 
tics developed to guide future development efforts. Only the Inspection 
Summary is available to management. The other documents are used by 
the authors and their project leaders. 

The Inspection Forms in Appendix E are for software inspections. In- 
spections can be applied to other types of workproducts such as program 
input decks or documents. The forms in Appendix E can easily be modified 
for different types, categories, and severities. 

9.4 Validation Testing 

Once written, a program may be validated by testing to ensure it satisfies 
its requirements, e. g., correct results, required execution speed. A program 
unit should be tested by itself first (unit testing) and then integrated into 
the larger system and tested (integration and acceptance testing). 

Tests cannot demonstrate the absence of errors, only detect their pres- 
ence. In one sense, a successful test uncovers a defect. An unsuccessful test 
uncovers no defects. Testing cannot locate or correct the defect; debugging 
performs these functions. Section 6 provides details on testing. 

9.5 Debugging 

Debugging identifies and corrects source code defects. Defects or bugs 
will occur in even the best designed and implemented code, so they should 
be expected and planned for. For example, how many compilers do you 
know of that had no bugs when first released? 

Debugging requires highly developed problem solving skills. The de- 
velopment environment strongly influences the amount of time required to 
identify a bug. Excellent interactive debuggers make identifying a bug much 
easier than inserting print statements. The software structure and design 
strongly influence the amount of software that must be modified to correct 
a bug. Good modular software using single entrance, single exit code struc- 
tures and a modular data structure make modification much easier. For a 
more complete discussion of debugging, refer to subsection 6.7. 

68 



10 Summary Example 

These guidelines provide a number of software standards, practices, and 
conventions that have proven useful in producing quality software. An exam- 
ple implementation of these practices is provided in the outline below. It has 
been used within Sandia for both in-house and contractor "small project" 
software development. Larger projects will require more formal procedures, 
e.g., for ~erification.~ 

Software Development Outline 

1. Requirements: Determine the requirements of the new code or pro- 
cedure to be developed. 

(a) Write down the requirements. 

(b) Discuss the requirements with the person responsible for the 
project (project leader) and potential users. Obtain formal ap- 
proval to proceed. 

2. Design: Construct a diagram to depict the flow of the data. 

(a) Provide an annotated picture of the design. 

(b) Discuss the design with the project leader. 

(c) Ensure the design is consistent with the requirements. 

(d) Generate a first cut at  the module header documentation. 

3. Detailed Design: Describe individual elements of the software sys- 
tem with a detailed English-language (pseudocode) narrative. 

(a) Include enough details in the narrative so that coding would be 
easy to accomplish by someone other than the author. 

(b) Ensure the narrative is easy to read. If the narrative becomes 
overly complicated, re-partition the design to make the overall 
flow easier to understand. 

4For larger projects, the development process is broken into several tasks. Each task has 
a well defined workproduct. Each workproduct is inspected to ensure it satisfies the 
appropriate requirements. The discussions with the project leader in the outline may 
become formal audits that assess consistency and completeness of the workproduct. 

69 



(c) Discuss the narrative with the project leader. Ensure this level 
of design satisfies the requirements (step 1) and adheres to the 
data flow diagram (step 2) .  Project leader and programmer must 
both be convinced the algorithm described by the narrative will 
perform the desired functions. 

4. Test Preparation: Construct a test set which will exercise the algo- 
rithm presented in the narrative. 

(a) Develop a test set that is “rich”: small enough to be manageable, 

(b) Document the expected results of the tests. 
(c) Note, discuss, and record any case that cannot be exercised due 

to difficulty in designing or implementing the test set, in case a 
problem arises later with that section of the code. 

yet comprehensive enough to cover the domain of input values. 

(d) Discuss the test set with the project leader. 

5. Implementation: Code the algorithm from the narrative. 

(a) Include all appropriate documentation and commenting at this 

(b) Walk through the code, checking that it performs the desired 

(c) Guarantee that the code as implemented agrees with the algo- 

(d) Ensure the code is readable and maintainable by a programmer 

(e) Ensure the project leader is willing to maintain the code as writ- 

time. 

function. 

rithm specified ,in the narrative. 

other than the author. 

ten. 

6. Validation: 

(a) Test the software on the test set. 
(b) Investigate the possible implementation of any enhancements and 

future features. Document and re-test as required. 

7. Operation and Maintenance: Install the resulting production ver- 
sion of the code in the appropriate user area and place under configu- 
ration control. Arrange for user training. 

70 



Appendix A 
References 

1. Introduction 

IEE84q The Institute of Electrical and Electronics Engineers, Inc. 
ANSI IEEE Standard for  Software Quality Assurance Plans, IEEE 
Std 730-1984, New York, 1984. 

IEE85 The Institute of Electrical and Electronic Engineers, Inc. 
IEEE Guide for  Software Quality Assurance Planning , approved 
September 19, 1985. 

SDM Systems Development Methodology 
For more information refer to SLI 1950 and Sandia National Labora- 
tories' Computing Education Center Catalog. 

SSGvl Sandia Software Guidelines 
Volume 1, Software Quality, SAND85-2344, Sandia National Labora- 
tories, Albuquerque, NM, expected printing Jun 1987. 

SSGv2 Sandia Software Guidelines 
Volume 2, Documentation, SAND85-2345, Sandia National Labora- 
tories, Albuquerque, NM, expected printing Jan 1988. 

SSGv4 Sandia Software Guidelines 
Volume 4, Configuration Management, SAND85-2347, Sandia Na- 
tional Laboratories, Albuquerque, NM, expected printing Jun 1988. 

SSGv5 Sandia Software Guidelines 
Volume 5, Tools, Techniques, and Methodologies, SAND85-2348, San- 
dia National Laboratories, Albuquerque, NM, expected printing Oct 
1987. 

2. Project Planning and Management 

SSGv5 Sandia Software Guidelines 
Volume 5, Tools, Techniques, and Methodologies, SAND85-2348, San- 
dia National Laboratories, Albuquerque, NM, expected printing Oct 
1987. 

71 



3. Requirements 

ALF77 Alford, M.W. 
“A Requirements Engineering Methodology for Real-Time Processing 
Requirements.” IEEE Transactions on Software Engineering. SE- 
3( 1):60-693977. 

DEM78 DeMarco, T. 
Structured Analysis and System Specification. New York: Your- 
don; 1978. 

GAN79 Gane, C.; Sarson, T. 
Structured Systems Analysis. Englewood Cliffs, NJ: Prentice-Hall; 1979. 

IEE8Sg The Institute of Electrical and Electronic Engineers, Inc. 
IEEE Standard Glossary of Software Engineering Terminology, IEEE 
Std 729-1983, February, 1983. 

IEE84r The Institute of Electrical and Electronics Engineers, Inc. 
ANSI IEEE Guide for  Software Requirements Specifications, ANSI 
IEEE Std 830-1984, New York, 1984. 

ROS77 Ross, D.T. 
“Structured Analysis (SA) : A Language for Communicating Ideas.” 
IEEE Transactions on Software Engineering. SE-3( 1): 16-33; 1977. 

ROS77b Ross, D. T.; Schoman, Jr., K.E. 
“Structured Analysis for Requirements Definition.” IEEE Transac- 
tions on Software Engineering. S E 3 (  1):6-15;1977. 

SDM Systems Development Methodology 
For more information refer to reference [SNL] and Sandia National 
Laboratories’ Computing Education Center Catalog. 

SNL Sandia National Laboratories 
Information Systems Standards, Sandia Laboratories Instruction, SLI 
1950, June 1979. 

TEI77 Teichroew, D.; Hershey 111, E.A. 
“PSL/PSA: a Computer-Aided Technique for Structured Documen- 
tation and Analysis of Information Processing Systems.” IEEE Trans- 
actions on Software Engineering. SE3(1):41-48;1977. 

72 



WAS80 Wasserman, A.I. 
“Information System Design Methodology’’ Journal of the American 
Society for  Information Science, Vol. 31, No. 1, January 1980. 

WAS79 Wasserman, A.I.; Stinson, S.K. 
“A Specification Method for Interactive Information Systems.” Pro- 
ceedings: Specifications of Reliable Software. IEEE Computer Soci- 
ety; 1979: 68-79. 

4. Design 

DAC85 Data and Analysis Center for Software 
Software Life Cycle Tools Directory, Rome Air Development Center, 
Griffiss AFB, New York, Mar 1985. 

DEM78 Demarco, Tom 
Structured Analysis and System Specification, New York, Jun 1978. 

FRE80 Freeman, Peter 
“The Context of Design,” Tutorial on Software Design Techniques, 
3rd edition, New York: IEEE Computer Society; 1980. 

IEE84q The Institute of Electrical and Electronics Engineers, Inc. 
ANSI IEEE Standard for Software Quality Assurance Plans, IEEE 
Std 730-1984, New York, 1984. 

IEE85 The Institute of Electrical and Electronic Engineers, Inc. 
IEEE Guide for Software Quality Assurance Planning , approved 
September 19, 1985. 

KIN84 King, D. 
Current Practices in Software Development - A Guide to Successful 
Systems, Yourdon Press, 1984 

MAR83 Martin, James 
Managing the Database Environment, Englewood Cliffs, N J,  Prentice- 
Hall, 1983. 

MYE78 Myers, Glenford J. 
Composite/Structured Design, Van Nostrand Reinhold Company, Dal- 
las, 1978. 

73 



PAG78 Page-Jones, Meilir. 
The Practical Guide to Structured Systems Design, Yourdon Press, 
New York, 1978 

PRE82 Pressman, Roger S .  
Software Engineering: A Practitioner’s Approach, McGraw-Hill, 1982. 

YOU79 Yourdon, Edward and Larry L. Constantine 
Structured Design: Fundamentals of a Discipline of Computer Pro- 
gram and Systems Design, Prentice-Hall, 1979. 

5. Implementation 

BOH66 Bohm, C. and G. Jacopini 
“Flow Diagrams, Turing Machines, and Languages with only Two 
Formation Rules,” Communications of ACM, vol 9, no. 5, May 1966. 

FA185 Fairley, Richard E. 
Software Engineering Concepts, McGraw-Hill Book Company, New 
York, NY, 1985. 

KER74 Kernighan, B.W., and Plauger, P.J. 
The Elements of Programming Style, McGraw-Hill, New York, 1974. 

6. Test 

EVA84 Evans, M. 
Productive Software Test Management, John Wiley and Sons, 1984. 

GRI81 Gries, D. 
The Science of Programming, Springer-Verlag, 1981. 

ICs82 Integrated Computer Systems 
Structured Design and Programming, course notes, 1982. 

IEE8St The Institute of Electrical and Electronics Engineers, Inc. 
IEEE Standard for  Software Test Documentation, IEEE Std 829- 
1983, New York, 1983. 

KIN84 King, D. 
Current Practices in Software Development - A Guide to  Successful 
Systems, Yourdon Press, New York, 1984 

74 



SH083 Shooman, M. 
Software Engineering: Design, Reliability and Management, McGraw- 
Hill, 1983. 

SSGv2 Sandia Software Guidelines 
Volume 2, Documentation, SAND85-2345, Sandia National Labora- 
tories, Albuquerque, NM, expected printing Jan 1988. 

7. Operation and Maintenance 

NUR83 U.S. Nuclear Regulatory Commission 
NUREG-0856, Final Technical Position on Documentation of Com- 
puter Codes for  High-Level Waste Management, Division of Waste 
Management, Office of Nuclear Material Safety and Safeguards, Wash- 
ington, D.C., Jun 1983. 

SOP85 U.S. Department of Energy 
SOP-03-02, Software Quality Assurance, NNWSI, Nevada Operations 
Office, Las Vegas, NV, draft Nov 85. 

8. Configuration Management 

DUN82 Dunn, Robert and Ullman, Richard 
Quality Assurance for  Computer Software, New York, NY, 1982. 

ED W85 Edwards, J.E., Hebert, J. J., and Herr, C.P. 
Martin Marietta, Software Development Standards for  Martin Mari- 
etta Energy Systems Computer Applications Engineering, Jan 1985, 
KID 5391 R2. 

FA185 Fairley, Richard E. 
Software Engineering Concepts, McGraw-Hill Book Company, New 
York, NY, 1985. 

IEE83c The Institute of Electrical and Electronic Engineers, Inc. 
IEEE Standard f o r  Software Configuration Management Plans, IEEE 
Std 828-1983, New York, 1983. 

9. Verification and Validation 

ACK84 Ackerman, A. F., and Fowler, P. J. 
“Software Inspections and the Industrial Production of Software,” in 
Software Validation, H. L. Hausen (editor), Elsevier Science Publish- 
ers B. V. (North-Holland), 1984. 

75 



FAG76 Fagan, M. E. 
Design and Code Inspections to Reduce Errors in Program Develop- 
ment, IBM Systems Journal, Number Three, 1976. 

FA185 Fairley, Richard E. 
Software Engineering Concepts, McGraw-Hill Book Company, New 
York, NY, 1985. 

FO W85 Fowler, P.J. and Ackerman, A.F. 
Videotape of a Sandia Labs Presentation of Inspection Techniques b y  
P. J .  Fowler and A. F. Ackerman. Refer to Nov 1985 issue of Sandia 
Computing Newsletter . 

ZEE89g The Institute of Electrical and Electronic Engineers, Inc. 
IEEE Standard Glossary of Software Engineering Terminology, IEEE 
Std 729-1983, February, 1983. 

ZEE85 The Institute of Electrical and Electronics Engineers, Inc. 
Draft Standard f o r  Software Verification and Validation Plans, IEEE 
Computer Society, Dec 2, 1985 

SOM85 Sommerville, I. 
Software Engineering, 2nd edition, International Computer Science 
Series, Addison Wesley Publishing Company, Workingham, England, 
1985 

SDS Structured Design Series 
DELTAK course; for more information, refer to Sandia National Lab- 
oratories’ Computing Education Center Catalog. 

WE171 Weinberg, G.M. 
Psychology of Computer Programming , Van Nostrand Reinhold, New 
York, N.Y., 1971. 

Additional References 

1. Boehm, B.W. 
“Software and Its Impact: A Quantitative Assessment” Datamation, 
Vol. 19, May 1973. 

76 



2. Branstad, M., Cherniavsky, J., and Adrion, W., 
“Validation, Verification, and Testing for the Individual Programmer”, 
Computer, December 1980. 

3. Brooks, Frederick P., Jr. 
“The Mythical Man-Month,” Essays on Software Engineering, Addi- 
son-Wesley Publishing Co., Menlo Park, CA, 1975. 

4. Connell, John and Brice, Linda 
“Practical Quality Assurance”, Datamation, March 1, 1985. 

5. Conway, R., Gries, D., and Zimmerman, E. 
A Primer on Pascal, Winthrop Publishers, 1976. 

6, EDP Analyzer 
Speeding Up Application Development, Vo1.23, No.4, April 1985. 

7. fieeman, Peter and Wasserman, Antony I. 
Tutorial on Software Design Techniques, 3rd edition, New York: IEEE 
Computer Society; 1980. 

(a) Boehm, B.W.: “Software and Its Impact: A Quantitative Assess- 

(b) Freeman, P.: “A Perspective on Requirements Analysis and Spec- 

(c) Lundeberg, M.: “An Approach for Involving the Users in the 

(d) Wasserman, A.I., Stinson, S.K.; “A Specification Method for In- 

(e) Wasserman, A.I.: “Information System Design Methodology” 

ment” 

ification” 

Specification of Information Systems” 

teractive Information Systems” 

8. Jensen, R.W. and Tonies, C.C. 
Software Engineering, Prentice Hall, Inc., Englewood Cliffs, New Jer- 
sey, 1979. 

9. Myers, Glenford J. 
Reliable Software Through Composite Design, Petrocelli, 1975. 

10. Squires, R. 
Presentation notes, “Prototyping Beyond the Concept,” Gullinet User 
Week ’85, PRES-U008-UW85. 

77 



Appendix B 

Glossary and Acronyms 
Where possible, definitions in this glossary are taken from the IEEE 

Standard Glossary of Software Engineering Terminology, [IEE83g]. They 
are included here to provide a single-source document for the reader. 

0 acceptance testing: Formal testing conducted to determine whether 
or not a system satisfies its acceptance criteria and to enable the cus- 
tomer to determine whether or not to accept the system. [see system 
testing] 

0 algorithm: A set of well-defined rules that gives a sequence of oper- 
ations for performing a specific task. 

0 ANSI: American National Standards Institute 

0 baseline: A product that has been formally reviewed and agreed 
upon, that thereafter serves as the basis for further development, and 
that can be changed only through formal change control procedures. 

0 bottom-up integration: A system of integrating modules in a pro- 
gram that starts with the bottom level modules and successively com- 
bines them to form larger systems. [See top-down and sandwich 
integration.] 

0 boundary condition: Extreme values (legal minimum/maximum 
for application), values falling on/near stated limits, special values 
(dependent on the application - e.g., blank, negative, zero) 

0 cohesion: The degree to which the tasks performed by a single pro- 
gram module are functionally related. [contrast with coupling] 

0 coupling: A measure of the interdependence among modules in a 
computer program. [contrast with cohesion] 

0 configuration control: The process of evaluating, approving, or dis- 
approving, and coordinating changes to configuration items after for- 
mal establishment of their baseline. 

0 cpu: central processing unit 

78 



0 debugging: Debugging and testing are distinct processes. Testing 
identifies faults; debugging locates, diagnoses, and corrects the fault. 
Debugging's input is testing activity's output. [contrast with testing] 

0 design review: A formal meeting at which the preliminary or de- 
tailed design of a system is presented to the user, customer, or other 
interested parties for comment and approval. 

preliminary design review (PDR) : The preliminary design 
review should emphasize traceability of the design to the software re- 
quirements, the practicality and maintainability of the design, and the 
adequate definition of the interface and data structure descriptions. 

critical design review (CDR) : The critical design review is 
a review of the detailed design of the software system prior to code 
development and implementation. It also is called the detailed design 
review. 

0 detailed design: The process of refining and expanding the prelim- 
inary design to contain more detailed descriptions of the processing 
logic, data structures, and data definitions, to the extent that the 
design is sufficiently complete to be implemented. 

0 field or operational testing: Testing performed by the end user on 
software in its normal operating environment. 

0 IEEE: The Institute of Electrical and Electronics Engineers, Inc. 

0 input and output assertions: Statements, usually stated formally 
in terms of first order predicate logic, that describe what is true before 
and after execution of some piece of code. 

0 inspection: A workproduct review process where a reader reads 
through the workproduct and a group of inspectors try to identify 
defects. Similar to walkthroughs, inspections are more formal in struc- 
ture and documentation. [see also walkthrough] 

0 installation testing: The formal process of confirming that a system 
or computer program is capable of satisfying its specified requirements 
in an operational environment. [see field testing] 

0 integration: The process of combining software elements, hardware 
elements, or both into a system. 

79 

. ..". . " "  ....... 



0 integration testing: An orderly progression of testing in which soft- 
ware elements, hardware elements, or both, are combined and tested 
until the entire system has been assembled. 

0 interface: A shared boundary. 

0 module: logically distinct part of a program 

0 module or unit testing: A series of tests performed on a program 
unit before it is integrated into a larger system. 

0 needs analysis: The process of studying user needs to arrive at a 
definition of system or software requirements. 

0 preliminary design: The process of analyzing design alternatives, 
defining the structure and relationships among the basic parts of the 
system, defining the interfaces, and typically preparing timing and 
sizing estimates. 

0 portability: The ease with which software can be transferred from 
one computer system or environment to another. 

0 procedural specification: The detailed description of a subroutine, 
a function, or a procedure. 

0 production environment: The conditions under which an applica- 
tion ultimately will operate. 

0 proof of correctness: An attempt to “prove” a program correct 
without running the program. These techniques can be considered a 
form of testing. Input and output assertions are formulated describing 
the program’s behavior; the goal is trying to prove that the program 
will conform to the output assertions from the given input assertions. 

A minimally functional system used to illustrate the 
software’s user interface or to prove the feasibility of a concept. Cau- 
tion: This is a non-standard definition of the word prototype. 

0 prototype: 

0 pseudocode: A combination of programming language and natural 
language used for computer program design. 

0 quality assurance: A planned and systematic pattern of all actions 
necessary to provide adequate confidence that the item or product 
conforms to established technical requirements. 

80 



0 real time: Pertaining to the processing of data by a computer in 
connection with another process outside the computer according to 
time requirements imposed by the outside process. 

0 requirement: A condition or capability that must be met by a sys- 
tem or system component to satisfy a contract, specification, or other 
formally imposed document. The set of all requirements forms the 
basis for system development. 

0 sandwich integration: A system of integrating modules in a pro- 
gram that is a combination of top-down and bottom-up integration. 

0 simulation testing: Testing software with a simulation program and 
auxilliary hardware to imitate the “real” operating environment as 
closely as possible. 

0 single-entry, single exit control structures: Coding constructs 
that perform a well-defined task, have one entrance and one exit. Ex- 
amples are IF-THEN-ELSE, DO-WHILE, REPEAT-UNTIL. 

0 software: Computer programs, procedures, rules, and associated doc- 
umentation and data pertaining to the operation of a computer system. 

0 software design description: A document describing the major 
components of the software design including data bases and internal 
interfaces. 

0 software development process: The process by which user needs 
are translated into software requirements, software requirements are 
translated into design, the design is implemented in code, and the code 
is tested, documented, and certified for operational use. 

0 software maintenance: Modification of a software product after 
delivery to correct faults, to improve performance or other attributes, 
or to adapt the product to a changed environment. 

0 software professional: One who develops or maintains software for 
others. 

0 software reliability: The ability of a program to perform a required 
function under stated conditions for a stated period of time. 

81 



0 software structure: The overall representation of the software sys- 
tem showing information flow and structure determined from the re- 
quirement s. 

0 specification: A concise statement of a set of requirements to be 
satisfied by a product, indicating, wherever appropriate, the procedure 
to determine whether the requirements given are satisfied. An example 
is a system requirements specifications. 

0 structured design: A disciplined approach to software design that 
adheres to a specified set of rules based on principles such as top-down 
design, stepwise refinement, and data flow analysis. 

0 structured source code: Computer programs derived from struc- 
tured design. 

0 subsystem testing: checking interfaces between system parts 

0 system: An integrated whole composed of diverse, interacting spe- 
cialized structures and subfunc t ions. 

0 system testing: The process of testing an integrated hardware and 
software system to verify the system meets its specified requirements. 

0 testing: Process of exercising a system (or some component) to iden- 
tify differences between expected and actual results. [contrast with 
debugging.] 

0 top-down integration: A system of integrating modules in a pro- 
gram that starts with the top level module and adds subordinate mod- 
ules. [see bottom-up and sandwich integration.] 

0 validation: The process of evaluating software at the end of the soft- 
ware development process to ensure compliance with software require- 
ments. [see also verification] 

0 verification: The process of determining whether or not the products 
of a given phase of the software development cycle fulfill the require- 
ments established during the previous phase. [see also validation] 

0 walkthrough: A workproduct review process where the author reads 
through the workproduct and a group of reviewers try to identify de- 
fects. [see also inspection] 

82 



.- 

Appendix C 
Sample Sandia Module Header 

The following example provides a recommended module header format 
for Sandia software projects. 

C=-------------------------------------------------------------- .............................................................. 

................................................................ 
C Description: 
C 
C 
C either from a Vendor file o r  an IGES extracted file. 
C 
C Programmer : K.T. Bear, SNLA/2814, FTS 846-6014 
C Version : 1.100 
C Version Date: April 1, 1985 
C Environment: DEC VAX; VMS 3.5, ANSI FORTRAN-77 
C 
C module calls: VENDOR, IGES 
C module called by: MENU01 
C 
C inputs : (drawing file name) 
C outputs : (Coordinate Endpoint File) 

SUBROUTINE ENDPTS 

Create Coordinate File -- 
This module initiates the process to traverse the 
drawing file and extract coordinate endpoint data, 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

assumptions: Vendor file o r  IGES 

last modified on: 02/22/86 
last modified by: L. Marsupe, 
reason : To increase 

from 100 to 

Local Variables: 
LUIN Vendor file or IGES 
LUOUT Coordinate endpoint 

file has been opened. 

SNLA/2814 
local endpoints limit 
200 (ref: IGES 3.0.) 

file : Integer 
file : Integer 

83 



Appendix D 

Control Structures 
The following graphics represent programming control 

cated in section 5.2: 

S E Q U E N C E  8 
9 

C A S E  

IF-  T H E N - E L S E  

structures advo- 

DO- WHILE 

False 

f 
R E P E A T -  UNTIL  

84 



Appendix E 
Inspection Report Forms 

This Appendix provides example forms as developed by Sandia's Data 
Systems Division in response to requirements of the Software Inspection 
process, as described in section 9. 

The forms include the following: 

0 Inspection Profile 

0 To be completed by Author 

0 Inspection Preparation Log 

0 To be completed by each Inspector 

0 Inspection Management Report 

To be completed by Moderator 0 

0 Inspection Defect List 

' 0  To be completed by Recorder 

t 

0 Inspection Summary 

e To be completed by Moderator 

85 



INSPECTION PROFILE 

Project : Date  : 

Unit  : 

Inspection T y p e  : 

0 Project  P lan  

0 Code 

0 Installation P lan  

0 Requirements 

0 Test P l a n  

0 Design 

Tes t  Cases 

Size of hlaterial  : (uni t )  

IS this a reinspection : No c] Yes 

Summary  of Open  Items : 

O t h e r  Comment s  : 

SNLA 6321 

86 

I October 1085 



INSPECTION PREPARATION LOG 

Project : Date : 

Unit : 

Inspector : 

Role : 0 Author 0 Moderator [7 Peer Inspector 

Overview attendance : No [7 Yes 

Date received Inspection Package : 

date time 

Preparation Log : 

Total Preparation : hours 

CONCERNS 
Description Location 

87 



Inspection Management Report 

Project Unit Moderator  

Inspec tion type :  

II] Project  Plan 
II] Code a Installation P lan  

II] Design a T e s t  Plan 
Requirements  
T e s t  Cases  

Overview held : JJNo a y e s  
Overview Durat ion Number  a t tending  

Number  of inspection meetings 
Total number  of inspectors 

T o t a l  meeting dura t ion  
Tot a1 preparation t ime 

Module disposition: J-J pass follow-up reinspect 

Es t imated  rework effort (days)  
Rework t o  be completed by 
Actual  rework effort 
Reinspection scheduled for 

O t h e r  inspectors 

Mod e r a  tor  cer t i fi c a t  ion D a t e  

Additional C o m m e n t s  

_ -  

SNLA 5301 - sor tware  inspection m a n a g e m e n t  r e p o r t  - issue 1 - O c t o b e r  01, 1985 

88 



Inspection Dcfcct List 

Project 11 II i t .  h lo t lc ra tor  

Document.  Location 

rieclu iremen ts 
1 T e s t  Cases 

Defect Defect 
TY Pe Class 

Page  of- 

. . ” I .  I, “ 



INSPECTION SUMMARY 

TC 

O T  

Project : Date : 

Test Coverage 

Other  

Unit : 

Moderator : 

Inspection Type : 

c] Project Plan 0 Requirements 

c] Code 0 Test P lan  

[7 Installation P lan  

Design 

0 Test Cases 

DEFECTS THIS OPERATION 

SNLA 5321 

90 



Appendix F 
Change Control Forms 

This Appendix provides example configuration management forms. The 
first two forms are used by Y-12 (Martin Marietta). The third form was 
developed by Sandia’s Data Systems Division. 

PROBLEM LOG BOOK 

PROBLEM D E S C R I P T I O N  : 

REPORTER/ REQUESTOR 

PROBLEM SOLUTION:  



RESPONSE TO SOFTWARE NONCONFORMANCE REPORT 

MAIL TO: ........................................................ 
User's Name Divis ion Address Phone 

I n v e s t i g a t o r ' s  Report 

Software Affected: 

Impact: 

System Objec t ives  Report 
Software Requirements S p e c i f i c a t i o n s  
Software Analysis Document 
Work Plan 
Software Design Document 
Software Acceptance T e s t  Plan 
User ' s Manual 
Software Maintenance Manual 
Code 

Estimated Number of Hours t o  Complete 

Recommendation: 

92 



PROBLEM REPORT 

DATE REPORTED: 

DATE RESOLVED: 

REPORTED BY: 

PERSON RESPONSIBLE: 

PROBLEM DESCRIPTION: 

PROGRAM OR PROCESSOR SUSPECTED: 

ACTION TAKEN/COMMENTS: 



f 

Note: Page numbers in boldface 
reference a subsection on the in- 
dexed term. Page numbers in ital- 
ics reference a definition of the term. 

acceptance testing 43, 68, 78 
analysis phase 54 

assembler 29 
ANSI FORTRAN-77 31 

baseline 78 

bottom-up integration 78 
boundary condition 78 

table 55 

change control 58 
board 59, 61 

change table 55, 57 
checklist 61 
code profilers 46 
cohesion 26, 78 
coupling 26, 78 
comments 35 
configuration 

control 78 
management 55 

plan 55 
conversion 52 

direct, 53 
modular, 53 
parallel, 53 

cpu 78 
critical design review 23, 79 

data 
modular, 37 
organization, 37 

debugging 68, 79 

design, 15 
symbolic interactive, 47 

description 15, 18 
detailed, 17, 23, 79 

document 21 
review 23 

preliminary, 80 
review 15, 79 

critical 23, 79 
preliminary 79 
results 15 

structured, 24, 82 
detailed design 79 
documentation, 

in-line 35 
maintenance, 48 
update supporting, 55 

documenting changes 57 
driver programs 46 
dynamic testing 40 

egoless programming 67 
emergency changes 58, 59 
environment 1 

error handling 32 
production 80 

fixes, 
emergency, 58 

formal reviews 62 

HIP0 20, 24 

implementation 29 
informal peer reviews 62 
in-line documentation 35 

94 



inspection 65, 79 
installation testing 79 
integration 42, 44, 68, 79 

librarian 56 
of units 43 
sandwich 81 

integration testing 80 
bottom-up, 78 
topdown, 82 

librarian 59 

library 38 
integration 56 

maintenance 35, 54, 61 
checklist 61 
documentation 48 
programmers 49 
software 81 

configuration, 55 
plan 55, 56 

management, 

manual, 
user’s, 48 

mnemonics 31 
modular data 37 
module 31, 80 

header 36 
separation 36 

needs analysis 80 

operational testing 79 
operating procedures 48 

pencil test 35 
Plan, 

configuration management 55, 

project 5 
56 

training, 48 
portability 34, 80 
preliminary design 80 

review 79 
procedural specification 80 
procedures, 

processor dependent 34 
production environment 80 
project plan 5 
prologue, 

programming 

operating 48 

source code, 60 

egoless, 67 
maintenance, 49 

proof of correctness 80 
prototype 54, 80 
pseudocode 16, 20, 69, 80 

quality assurance 80 

real-time 44, 81 

requirements 10, 81 
review 

systems, testing of 45 

critical design 23, 79 
formal 62 
informal peer 62 
preliminary design 79 
software requirements 9 

revision history 60 
“rich” test set 41, 70 

sandwich 
integration 81 
testing 42, 43 

simulation testing 81 
single entry, single exi 
software 81 

design description 

32 

18, 81 

95 



development process 81 
life cycle 3, 62 
professional 81 
reliability 81 
requirements, 

review 9 
specification 9 

structure 82 
test plan 39 

source code prologue 60, 60 
spaghetti code 29, 29 
specification 82 

procedural 80 
software requirements 9 
system requirements 40, 43 

static testing 40 
structured 

design 82 
source code 29, 82 
walkthrough 22 

subsystem testing 82 
symbolic 

constants 34, 47 
interactive debugger 47 

system 82 
requirements specification 40, 

43 
testing 82 

table, 
baseline, 55 
change, 55, 57 

telephone test 35, 85 
test set 39 

documentation 39 
“rich” 41, 70 

test results 39 
testing, 39, 68, 82 

acceptance 43, 68, 78 

dynamic 40 
operational 79 
installation 79 
integration 80 
real-time systems 45 
sandwich 42, 43 
simulation 81 
static 40 
subsystem 82 
system 82 
topdown 42 
unit 68, 80 

testing 42 
topdown 

training plan 48 

unit testing 68, 80 
update supporting documents 55 
user’s manual 48 

validation 62, 82 
variable descriptors 37 
verification 62, 82 

walkthrough 64, 82 

white space 29, 29 
structured 22 

. 

96 



Distribution: 
Sandia Internal: 
333 R.D. Summers (2) 
341 P.S. Hamilton 
342 L.M. Ford (2) 
1231 P.L. McAllister (2) 
1254 T.F. Ezell (2) 
1500 W. Herrmann 
1520 D.J. McCloskey 
1523 J.H. Biffle (2) 
1533 M.E. Kipp 
1624 S.J. Weissman (2) 
1636 P.C. Kaestner 
2111 P. Hofstadler 
2113 J.A. Wisniewski (5) 
2113 J.A. Hudson (2) 
2300 J.L. Wirth 
2311 H.D. Pruett (2) 
2311 R.C. Lennox (2) 
2314 D.M. Small 
2330 E.H. Barsis 
2336 C.R. Borgman (2) 
2600 R.J. Detry 
2610 D.C. Jones 
2612 D.M. Darsey 
2614 A.R. Iacoletti 
2620 E.C. Domme 
2640 E.J. Theriot (2) 
2642 P.A. Lemke (2) 
2646 R.J. Hanson (2) 
2800 H.W. Schmitt 
2810 D.W. Doak 
2811 J.C. Kelly 
2811 L. Meirans (2) 
2812 J.F. Jones, Jr. (2) 
2812 L.M. Grady (5) 
2812 R.J. Harrison 
2813 S.K. Fletcher (2) 
2813 S.L.K. Rountree (5) 

2813 D.B. Saylors (2) 
2814 P.A. Erickson 
2814 A.L. Ames (2) 
2814 M.A. Blackledge (100) 
2814 R.E. Parks (2) 
2820 G. Carli 
2821 R.E. Thompson 
2825 J.R. Yoder 
2826 A.J. Ahr (5) 
2830 G.R. Urish 
2850 J.L. Tischhauser 
2854 K.E. Wiegandt 
2854 S.C. Babb (5) 
2854 N.J. Nelson (2) 
2854 V.R. Yarberry (2) 
3151 R.L. Manhart 
4030 G.W. Kuswa 
5100 J.C. Crawford 
5146 J.W. Redel 
5164 D.H. Schroeder 
5164 M.W. Sharp 
5164 M.J. Smartt (2) 
5172 G.C. Novotny 
5172 G.J. Dodrill 
5218 D.J. Gould 
5255 P.W. Harris (2) 
5255 A.L. Yates (5) 
5261 D. Coleman 
5263 R.F. Davis (2) 
5268 C.E. Olson (2) 
5311 M.C. Jones 
5311 J.L. Krone 
5311 J.E. Lenberg 
5321 A.M. M a t e d  (2) 
5321 C.C. Newcom 
5321 D.H. Rountree (5) 
5324 L.J. Ellis (2) 
5324 M.T. McCornack (2) 
5324 J.C. Rowe (2) 

97 



5324 W. J. Slosarik (2) 
6228 P.J. Eicker 
6310 E.W. Shepherd (2) 
6312 R.W. Prindle 
6315 R.C. Hall 
6330 G.R. Romero 
6412 S.H. McAhren 
6415 F.E. Haskin (2) 
6415 L.T. Ritchie (2) 
6440 D. Brosseau (2) 
6440 D.A. Dahlgren (2) 
6444 J.M. McGlaun (5) 
7200 J.M. Wiesen 
7250 J.A. Hood 
7252 C.A. Trauth, Jr. 
7252 D.P. Patrick (5) 
7252 S.L. Sardalos (2) 
7262 F.A. Ross 
7262 D.G. Adams (5) 
7262 R.B. Ronan (2) 
7263 G.W. Mayes (2) 
7521 S.Y. Goldsmith 
7524 H.T. Cooley 
7524 W.D. Swartz (2) 
8025 R.L. Fugazzi 
8230 W.D. Wilson 
8235 D.L. Crawford (2) 
8270 R.C. Dougherty 
8272 D.B. Hall 
8274 R.J. Aiken 
8274 R.E. Isler (5) 
8274 P.K. Neighbors 
8348 T.P. Tooman (2) 
8474 J.N. Rogers (2) 

3141 S.A. Landenberger (5) 
3151 W.L. Garner (3) 
3154-1 C. H. Dalin (28) 

for DOE/OSTI 
8024 P. W. Dean 

98 




